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FOREWORD

This report was prepared by Lockheed Missiles and Space Company, Inc.,
Palo Alto Research Laboratories, 3251 Hanover Street, Palo Alto, California,
in partial fulfillment of the requirements under Contract F33615-76-C-3105.
The effort was initiated under Project 2307, "Research in Flight Vehicle
Structures," Task 2307N102, "Research in the Behavior of Metallic and
Composite Components of Air Frame Structures." The project monitor for
the contract was Dr. Narendra S. Khot of the Structures and Dynamics Division
(AFWAL/FIBRA).

The report covers work under the contract concerned with the efficiency
of different discretization procedures. The technical work under the contract
was performed during the period June 1976 through October 1980. Review reports
were submitted in October 1980 and the final report in March 1981. Results
from separate but related efforts are included for completeness. These include
the description of an element configuration developed under the LMSC independent
research program and a summary of the state-of-the-art performed under contract
with AFOSR.

The other reports published under this contract are "Imperfection Sensi-
tivity of Optimized Structures," (AFWAL-TR-80-3128), "Panel Optimization with
Integrated Software (POIS)," (AFWAL-TR-80-3073, Vol I and II), "Design of
Composite Material Structures for Buckling, An Evaluation of State-of-the-Art,"
(AFWAL-TR-81-3102), "Supplementary Studies on the Sensitivity of Optimized
Structures," (AFWAL-TR-81-3013).
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Section I

IN POUCTIcN

The structural response to a given envirorment is determined by the differen-

tial equations of motion of deformable bodies. Numerical solutions of such

equations are discussed in the following for the case in Uhich all derivatives

with respect to time can be discarded so that the equations degenerate into a

set of static equilibrium equations. Additional questions that may arise in a

dynamic environment are not considered. We pay special attention to the

behavior of shell structures. For such structures, the mathematical problem

is defined by a set of non-linear partial differential equations of elliptic

type or by an equivalent energy principle. Analytic solutions of such problems

for a reasonably large class of structural configurations are not within the

realm of the possible. Cbnsequently, the mathematical problem is recast into

a numerical problem for solution on the cniputer. This transformation can be

applied to the equilibrium equations or directly to sane energy expression.

The output from the computer consists of a sequence of numbers, in some way

representing the functions satisfying equilibrium equations and boundary condi-

tions. If the solution is represented by a linear superposition of a set of

"basis functions", then the cuoxnents of the output vector consist of the

coefficients in this series. This is the case if we use the Galerkin or

Rayleigh-Ritz procedures. if we use the finite difference or finite element

procedures, the solution function is represented by its values at a number of

discrete locations within the structure. Because these discretized methods

are rendily applied in a computer program for a general type of structure,

they have bee gaining popularity. This applies in particular to the finite

element method. The discretized methods make use of numerical differentiation

and numerical integration. A review of these operations here is intended to

serve as a background to a discussion of the different options that are

availble for mrmerical analysis of shell structures.

1!
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Section II

NUJMERICAL DIFTREWIATION

Numerical differentiation consists of the replacement of the derivatives of a
function by difference quotients (or finite difference expressions). Such
expressions are generally based on local polyrnial approximnations. A truncated
Taylor series can be used for this prpose. In the one-dim~ensional case

(one space variable) the series is of the form

f xW =f (0) + Xf'1(0) +2 f"()+ x ~ n ()) + R()

where the prim denotes differentiation with respect to x. The remnd~er
R represents the sum of the term that were excluded when the series was
truncated after the (n+l) th term. it can be shown that (see Reference 1,

for example) that

xn+l

where (2)

F = Max [f (n + 1) 1 0 < < _X

This bound on the truncation error is useful for estimates of the accuracy

of the output vector.

Finite difference expressions may be derived at a number of control points.

First, the function values at a nmber of discrete node points are expressed

in ternsn of the derivatives at the control points by use of a suitably truncated
Taylor series. In Equation (1), it is assumed that x = 0 at the control point.

The procedure leads to a set of linear equations and through solution of this
system, expressions for the derivatives at the control point are obtained in

term of the function values at the selected node points. The number of node

point values included must be equal to the number of terms of the Taylor
series. In the general case the highest order derivative so determined will

2



be of first order accuracy, i.e., the error E = O(h). If ex-

p3ansion is oxmnlete throuph derivatives of nth order, the kth derivative (k<n)

will be of order (n - k + 1).

Figure 1 illustrates how finite difference expressions can be derived in a

two-dimnensional space. A Taylor series approach gives us

f ( af,+Bif*+1 2j, +f. Bif.

f(at Ni) = ( + aijf' + 8i.f" + 1ij + Pij~ijf' + (3)f + "

where a prime indicates differentiation with respect to the xI coordinate,

and a dot differentiation with respect to the x2 coordinate.

If derivatives up to the seoond order are to be determined, it is sufficient

to specify for each control point a set of six neighboring node points
(Ni to Ni+5). By applying Equation (3) at each of the six node points, we

obtain the equation system

1 12 12

f2 1 2j 82j V2j a2j8 2j '2j

12 3~

f 3 1 23 a.83

(4)
f4 1 4j 4j 12j 4j4j 4j

12 12 V

f5 1 5j  
85j V5j 5j 5j *75j

f 1 a6 8 12 a 1 2f
f 6  86. 6j 6j86j 66j

3
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Figure 1 Tvo-D Finite Difference Grid
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The solution of the equation system yields a set of finite difference expres-

sions for the derivatives at control point j. The error bound for the second

order derivatives are E = OWh. The first order derivatives are of second

order accuracy. If one or mo~re of than second order derivatives is left out,

the remaining derivatives may be expressed in terms of five nodal values.

Then the first order derivatives are only of first order accuracy and the

expressions for the second order derivatives may be meaningless, E = 0(h 0 )

Since there are four different third order derivatives, we must include ten

nodal function values in order to raise the accuracy by one order [E = (h3

for the first and E = 0(h 2) for second order derivatiesi.

Linear, quadratic or cubic expansions are obtained if all derivatives up to

first, second or third order are retained. Bilinear, biqruadratic or bicubic

are expansions including all derivatives that are at most of first, second

or third order with respect to any one of the two space variables. It may be

noticed that the order of accuracy of bilinear expansion remains the same~ as

that of the linear expansion and a similar statement holds for higher order

expansions.

The nodal values (degrees of fredxn) need not be restricted to function

values. A higher order derivative at a control point can be expressed in

terms of lower order derivatives at the nodal points. These lowr order

derivatives are then included as support for the local approximation of the

solution. Such procedures are discussed in Reference 2, for example.

The location of the control points in relation to the node points can be

chosen so that the coefficient becomnes zero for the lowest order terms among

those that are discarded. In that case the accuracy of the approximation

is raised by one order. For demonstration we consider the configuration in

Figure 2.

The degrees of freedc'n of the system are the function values fl and f 2 and the

first order derivatives 81 an 8 2 at the node points. The finite difference

equivalent of the second order derivative at some point in the interval is



determined fron a one-dimensional Taylor series

f2 3 _
4  (5

f+ + -f' + --f" +  f + (5)

It follcs that

2 3

f'(x) = f' + xf' + - f''' +  -- f + ... (6)
0 0

h'h

0 X 0
NODE f POINTO I

Figure 2. One-D Finite Difference Grid

For sinplicity we drop the subscript zero referring to the control point.

The finite difference expressions are obtained fran the equation system

h32 h3  h4  4 IV
f + h(l - a)f' + T- (1 - m)2 f, + )( - a)3f,,, + f (Ii-= f2

2 2 3 344h~2  ha h4 a4 fiv
f -haft + h-a f" - g: f''' + -h -e=I fl

2 6 24'~- ~1
(7)

f' + h(l - a)f'' + h 2 (1 - 0)2f,,' 6- (1 - = 2

f( -+ f f 12

6



The solution of this equation system includes

f= - 6( - 2c)(f 2 - f) - 2h(2 - 3c)f 2 + (1 - 3a)f 1

(8)h 6- 2 a)(2-f

2(6a2 - 6a + ) fir + O(h3)]

If a is chosen so that the coefficient for fiv vanishes, i.e.,

6a2 - 6a + 1 = 0 or a= (1 ± i/F)/2

then the relative error in the second order derivative (Equation 8) is of
third order. The function y = 6a2 _ 6a + 1 is shmwn in Figure 3. Points at

which the first term in the error vanishes are sometimes referred to as

stress windows.

4.

0 o.to.

Figure 3. Error Function

The possible advantage of strategic positioning of the control points is

further illustrated by the two finite difference schmnes shown in Figure 4.

7



0 N

A
Scheme A

-o o-x- 0 0-

Scheme B

Figure 4. Two Finite Difference Schemes

If function values only are used as freedoms and the nodal spacing is uniform,
the stress windows are located at the node points for even order derivatives

and halfway between them for odd order derivatives. With Scheme A we find

+V= 1 9-jj_5h= (f+l -f_1 ) - h ~f '

(9)
1 1 2 iv(f+l -2fo + f-1 )  -

and with Scheme B

1 1 2f= hi (f+i2 - f-l/2 ) - hf'"

f"= T (f+3/2 - f+112 - f-1/2 + f-3/2 ) - h f (10)

For a first order derivative of first order accuracy we need (in the one-
dimensional case) two node point values. The first of Equations (10) gives

the derivative of second order accuracy at the stress wirdow, halfway

8
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between two nodes. Cn the other hand, if we derive a formula for the first

derivative at a node point from two function values (forward or backward

differences) we find that the expression is of first order accuracy, i.e.,

f2-fl h
f h 2(1)

By use of three node points we can define the first order derivative with

second order accuracy at any point If the control point is placed at the

node point in the middle the derivative is defined by the first of

Equations (9). That is, the error is four times larger than it is in the

derivative at the stress wirdw in the two point schme. On the other hand,
the forward and backward difference expressions are still of second order

accuracy

f (4f - f2) + 1 h 2 + . . (12)

It can be shown that first order derivatives determined fran a uniform

three point scheme are most accurate (of third order) at stress windows,

located symmetrically at a distance of h/263 from the midpoint node.

A camparison of second order derivatives fran three- and four-point schemes

gives similar results. Even order derivatives in a uniform grid are most

accurately computed if one node coincides with the control point and the

remining nodes are placed symmetrically around this point. The location

of stress windows in the case of nonuniform spacing is discussed in

Reference 3.

9
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Section III

NUMerICAL INTGRATIO%

The purpose of numerical integration is to Coxxute an approximate value of
b
f f(x) dx.
a

In order to achieve this we divide the range of the integral a,b into a

number of small subintervals. If the function values are determined at the

midpoints of intervals (see Figure 5a), the integral can be obtained by

use of the so-called rectangle rule, i.e.,

b N
f f(x) dx = h f. (13)
a i=l -

where N is the number of intervals. If the function values are determined
at points of division between the intervals (including the end points a,b),
then we can use the trapezoidal rule illustrated in Figure 5b.

b
ff(x) dx = h(1/2 f0 + f 1 

+ f 2  fn-i + 1/2 fn )  (14)
a

/ b) f

I ,

b a.
Figure 5. Numerical Integration Schemes

10
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It is shown in Reference 1 that both these methods are of second order accuracy.
The rectangle rule is somewhat more accurate with the error bound

- 24 If'' () I; a < <b. (15)

while the error botud for the trapezoidal rule is

E < b - 1h 2 If'' (E) I; a < < b. (16)

A number of procedures of higher accuracy have been proposed (Euler-MkLaurin,

Stirling). The Newton-Cotes series of integration formulas are based upon the

passing of a polynomial through a sequence of function values and integration

of this polynomial over the subintervals. Since Lhe trapezoidal rule is

based on a linear approximation over the subintervals, it may be considered

as the lowest order method in the Newton-Cotes series. A Newton-Cotes

formula of third order accuracy is obtained if we use second order poly-

rncmials for interpolation between node points. With uniform spacing, this

member of the Newton-(otes family is well known as Simpson's formula

b
f f(x) dX = h (f + 4f + 2f + ... 4f + f) (17)

3 0 1 +2+. n-l na

We notice that use of Simpson's formula requires that the number of sub-

intervals is even. Higher order Newton-Cotes formulas are increasingly

restrictive with regard to the permissible number of subintervals.

A method of special importance in finite element analysis is the Gaussian

Quadrature. In this procedure strategic positions are established for the

points at which the function is to be determined. As an example we will

show here how a two-point integration schem is derived. If the function

values at x = ±a9 are f1 and f 2 with x = 0 at the midpoint of the interval,

we can approximate the function by

f 1 + f 2 f 2 f f1
f = 2 + F 2 (x) + R (18)

11



where F2 (x) is a function of second degree in x and vanishes at

x = ± at and R is a power series beginning with the third order term.

Due to the symmetry, the integral of odd power terms vanishes and consequently

we can write

f 2 + C 1  (a22 - x2) + C2 (a)x 4 + (19)

and

Z/2 2 15f f(x) dx(=(fl+f 2 ) + aC£3 (2 ) + C2 (a) 95/5 + ... (20)
-9/2

Choosing to determine the function values at the coordinates corresponding

to ai + /2/3 we obtain

L/2
f f(x) dx = t(0.5f1 + 0.5f2) (1 + E). (21)

-Z12

The relative error E = C 4/(f1 + f2) where C is a constant. The method

integrates any polynomial up to the third order exactly. The points corre-

sponding to a = ±/2vr are referred to as the Gaussian points. Integration

schemes of higher order are obtained by inclusion of additional Gaussian

points. Tables are available that give the location of the Gaussian points

and corresponding weighting factors for the function value. For exact

integration of a jth order polynomial where j is odd we need (j + 1)/2

integration points. Sometims polynomials are integrated with fewer points

although this permits the existence of positive definite functions whose

integral over the domain vanishes. The procedure is then referred to as

reduced integration.

We notice that the position of the "Gaussian points" coincides with the stress

windows for the second order derivative in the case with displacemnts and

rotations defined at the end points of the interval (Figure 2). The rectangle

12
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rule, identical to the use of a Gaussian (Qiadrature ov'er the individual

intervals with only one integration point in each, integrates only first order

functions exactly.

13
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Section IV

E THODS

The equations of equilibrium of a deformable body can be derived by considera-

tion of the balance between elastic forces, body forces and possible surface

tractions in an infinitesimal volume element. By use of the constitutive

equations, relating strains to stresses, and the kinematic relations, defining

strains in terms of displacement components, the equilibrium equations can be

expressed in terms of the displacements.

If the loading is conservative and if only elastic deformation is considered,

the condition stated by the equilibrium equations is equivalent to the require-

ment that the sum of the stored strain energy and the potential energy of the

applied force system equals zero during a small virtual displacement. Based

on this theorem of virtual work we can derive the theorem of minimum potential

energy. According to this theorem:

Among admissible displacements, the configuration

corresponding to equilibrium is such that the total

potential energy is stationary; for stable equilibrium

it is at a minimim.

That is

6 (U + W) = 0 (22)

where U represents the strain energy and W the potential energy of the

external forces, i.e. the negative of the work done by these forces during

deformation. Admissible are all displaonents that satisfy continuity and

essential boundary conditions. The strain energy U can be written

U 1/2 f c [E] £dV (23)
V

14
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where c represents a vector of strains and [E] is the (3 x 3) matrix of

coefficients in the constitutive relations. The potential energy of the

external forces is represented by

W = - f U.T dS (24)
ST

where T represents the components of surface traction and ST the part

of the structure on which such tractions (external forces) are defined.

The theorem of minium omlementary energy is an alternative formulation

also derivable from the principle of virtual work. This theorem states that:

Among all admissible states of stress the configuration

corresponding to equilibrium is such that the complemen-

tary energy is stationary; for stable equilibrium it is

at a minimum.

That is

6(U* + W*) = 0 (25)

where

U*= 1/2 f o[El- 1  dV
V

and

W*= - f T-u dS (26)
SU

where SU is the surface upon which displacemnents are defined and T the

corresponding tractions (reactions). Admissible are stress states that

satisfy continuity and boundary conditions on surface tractions.

15
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Multifield energy principles includinj both stresses and strains as free
variables can be derived based on the relation

f a c dV = U + U* (27)
V

The expression for the energy is in mathematical terms referred to as a

functional. That is, it defines a scalar value U corresponding to a given

function. In analysis of plane stress in plates or in a three dimensional

analysis, the functional contains derivatives up to the first order only.

In beam analysis or in analysis of plates and shells certain approximations

result in the introduction of second order derivatives into the energy

functional. Displacements at any point in the structure are expressed in

terms of displacements and displacement derivatives at a reference surface.

As a consequence, the problem is reduoed to be one-dimensional (response

quantities are functions of one spatial coordinate only) for the case of

beams and two-dimensional for plates and shells. For beams then, the equa-

tions of equilibriun become ordinary differential equations, while for plates

and shells they remain partial differential equations. The reduction of the

number of spatial coordinates can be obtained because the structure is thin,

allowing the approximations:

(1) normals to the reference surface remain straight and normal

during deformation, and

(2) the transverse normal stress is negligibly small.

In a second order theory, approximately accounting for transverse shear
deformation, the normals remain straight but are allowed to rotate in rela-

tion to the reference surface.

The assumptions on which a shell theory is based allows the integration through
the thickness so that the strain energy is represented by a surface integral.
The strain energy is expressed in terms of a six-component vector of reference

16



surface strains and changes of curvature and the (6 x 6) matrix of coefficients

in the equations relating those to the vector of force and rmmnt resultants.

Solutions to the equilibrium problem are obtained by application of one of the

energy theorems after numerical analysis procedures has been used to express

the corresponding functional in term of a finite number of degrees of

freedom. Another possibility is to seek numrerical solutions to the equivalent

differential equations of equilibrium.

17



Section V

GLOBAL FUNCTION APPF40ACH

In this section we briefly discuss the methods in which the solution function

is represented by a linear superposition of basis functions. These are

generally allowed to assume ronzero values over the entire domain (except as

restricted by boundary conditions). We refer to such a procedure as a

global function approach in order to emphasize its distinction from the finite

element method to be discussed later.

The Galerkin Method has been widely used to yield approximate solutions to

differential equations in structural analysis as well as in many other

applications. The method is applicable to partial as well as to ordinary

differential equations. For simplicity, we write the equation in the form

L(u) = 0 (28)

where L is a differential operator and u represents the displacement field.

We seek a solution in the space of all trial functions defined by

N
u.= an.n  (29)

n=l n

where the basis functions, *n? represent kinematically admissible functions
(i.e., they are continuous and satisfy given boundary conditions). The

caponents of the output vector are the an . Applying Galerkin's method,

we determine the an through solution of the equation system:

f L(u)omdV = 0
V (30)

i.e. j L an~n Om dV = 0 for m = 1,N.

18
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If u = UN represents the solution of this system with N basis functions,

oonvergence to the oorrect solution is implied if the norm

I UN _u* I - 0as N -+= (31)

where u* is the solution of the mathematical problem L(u) = 0. The norm of a

function defined on the domain V can be chosen as

Hull = f u2 dV (32)

V

we will return below to the requirements for convergence with increasing

value of N.

The energy methods can also be used directly for construction of a solution

to the euqilibrium problem in terms of a linear combination of global

functions. One such procedure is the Rayleigh-Ritz Method in which the

trial functions
N

IN = N (33)

are substituted into the expression for the total potential energy. The

basis functions *n are required to satisfy essential (displacenent) boundary

conditions. The unknown coefficients an are determined through minimization

of the total potential energy. Natural boundary conditions are automatically

satisfied through the minimization.

A proof for convergence of the method is provided in Reference 4. The condi-

tions for convergence to the correct solution are

(1) For functionals containing derivatives up to the nth order it is

required that derivatives of the trial functions up to the (n-l)th

order are continuous. This is a sufficient, but as we will see

later, not always necessary continuity condition.
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(2) The set of trial functions must be complete. That is, the

set of trial functions must contain a sequence of functions

that in the limit approaches any admissible function

arbitrarily close.

(3) Essential (displacement) boundary conditions are satisfied.

The Galerkin method discussed above is in one respect an extension of the

Rayleigh-Ritz method. It is applied also to differential equations that

cannot be derived through a variational approach. It is shown in Reference 4

that the Galerkin method when applied to variational problems with quadratic

functionals is identical to the Rayleigh-Ritz method. This establishes

convergence of the Galerkin method within that range. For other cases,

it appears that the assumption of convergence is based on conjecture.

Before the introduction of the digital coaputer, the Rayleigh-Ritz and Galerkin

procedures were frequently applied with trial functions chosen on an intuitive

basis. Very few terms were included. The use of complete sequences and

convergence control became popular with the arrival of high-speed cMIputers.

With the demand for programs of general-purpose type, these methods were

gradually abandoned in favor of finite difference and finite element methods.

20
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Sectioi. VI

FINITE DIFFEEC METlHODS

The finite difference metho~ds are based on replacement of derivatives by finite
difference expressions as discussed above. The different expressions can be
introduced into the equilibrium~ equations or in somne energy expression. in

the former case an algebraic equation system is directly obtained, in which

the node point displacmnts and possibly rotations are the unknowns and each
equation expresses equilibriumn at one of the co~ntrol points,. The number of

equations must be equal to the numrber of degrees of freedom of the system.

-Many examples of application of this procedure are given in the literature.

In Reference 5, it is applied in an analysis of column buickling.

The problems involved in practical finite difference analysis are much the

same if finite difference expressions are used in cxibination with the energy

approach. Since this approach presently is of more direct interest to us,

the discussion of the direct use of the equilibrium equations will be

restricted to the problem of convergence. Over the years many efforts have

been made to show that the method converges with decreasing node point spac-

ing to the solution of the differential equation, i.e.,

IRPjuh *H I -oas h -O (34)

where Uh is the finite difference solution corresponding to a node point spacing

of h.

Rigorous matheatical proofs have been presented for special cases, but

due to the diversity of differential equation forms, boundary conditions and

shapes of the dcmain, it appears to be difficult to establish convergence

in the general case. However, maathematical rigor has never been the trade-

mark of engineering analysis. Often the assum'ptions and simplifications in

modeling the structure are of such a nature as to make the quest for mathe-

matical rigor rather extravagant. If the application of apparently reasonable

methods had been deferred in anticipation of rigorous proofs of uniqueness
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and convergence, progress in engineering science would have been considerably

retarded.

The finite difference approach appears reasonable from the point of view of an

engineering analyst. One difficulty related to the convergence proof is that

the error term in the Taylor series expansion contains a derivative [f 1 (F

in Equation 2 of the solution function itself. Witn some~ feeling for the

T physical behavior of the system, the analyst may assume that the solution

vector varies continuously with the input data (I f'r j~)< C JIT1I) so that

the truncation error can be expressed in terms of the loading function rather

than in terms of the solution. Whenever the assumption that the solution

varies continuously with the input data is violated, finite difference formula-

tions may lead to spurious results. Consider, for example, the case of a

beam in bending. We substitute the second order derivative by a three-point

central finite difference expression except at one internal point where we

use either a backward or a forward difference expression. The beam so defined

has a link at the point in question.

It appears reasonable to accept the proposition in Reference 6 that the finite

difference approach in solution of differential equations converges toward

the correct solution if:

(1) the local truncation error vanishes with the grid size

(2) for small values of h the solution varies continuously

with the input data (loads).

The second requirement will exclude a spurious solution such as the one for

the beam discussed above.

The use of finite differences in a variational approach is discussed in

Reference 7 on page 182. The finite difference expressions are introduced

directly into the energy expression and the potential energy is minimized

with respect to the values of nodal displacmnt comonents. The convergence

of the procedure is not discussed in Reference 7. We may appeal to equiva-

lence with finite difference solution of the Euler equations discussed above.
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A rigorous a general proof of convergence does not appear to be available.

It will suffice for us that whenever the procedure has been applied to a

case with a kKown solution, it has been found to converge toward that solution.

The advantages of introducing the difference quotients into the potential

energy expression rather than into the equilibrium equations are that the

coefficient matrix becomes symmetric and that the natural boundary conditions

are autcn-atically satisfied. For a simple demonstration of the method, we

will consider the buckling of a column with uniform cross-section (compare

Reference 5, page 283). The buckling load is defined as the load level at

which the second variation of the total potential energy vanishes. Hence,

26 2V j2LT  2 2 (3526 2 f [EI (w,x x ) 2- P (w,x) 21dx = 0 (35)
0

In order to take advantage of the stress windows as discussed above [see

Equations (9) and (10) ], we will determine w, at midnodes and w, at node

points as shown in Figure 6.

? 7 ?

x x x

X NODE POINTS
CONTRO. PTrS FO .,, X X

0 CONTROL PT5 FO9 VrX

Figure 6. Finite Differere Scheme for Column Buckling Analysis
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Then (Wx)2 can be integrated by use of the rectangle rule, and (w,X.)2 by
use of the trapezoidal rule. We have

N-1

(w, 2 = h (wi - wi) (36)
i=l

and
: N-1

2w. 2 1 2 w0 1  2
1 2 1 )i=2 

(37)

+ 2h -N-i 2N + wN+ )2

Fictitious points (corresponding to w0 and WN+l) have been introduced so that

the second order derivatives can be determined at the end points. We could

instead introduce forward and backward derivatives at these points or add

the rotation at the end points as a freedom. Whenever energy methods are used,

the control points at which derivatives are required coincide with the integra-

tion points at which the energy density is defined.

After the number of uniformly spaced node points have been chosen, we can

form a homogeneous equation systen in which P appears as the eigenvalue

parameter. Solutions, given in Reference 5, are shown in Table 1.

TABLE 1

CXLUM BUCKLING LOADS

Number of Nodes PCR 2
on Half Column (i) Critical Load / [EI(w/L)

3 0.9495
4 0.9774
5 0.9972
7 0.9943
9 0.9968

11 0.9979
01.0000
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Since the finite difference expressions as well as the numerical integrations
are of second order accuracy, we expect the error in the solution to be
proportional to the square of the spacing between node points if the grid is
fine enough so that fourth order terms in the error are insignificant.
(We have amitted the step showing that natural boundary conditions are satisfied
to the same degree of accuracy.) As the grid spacing equals L/2(i-i), we obtain

from the first two results in the table above
2

E3 = c 2(3 L _ -i) = PCR - 0.9495
2 (38)

E4 = C1 2 (4 L- 1) = PTR - 0.9774

Dividing the first of Eqations (38) by the second, we obtain an equation from
which we determine PCR = 0.9997. In view of the fact that the values of PCR
for 3 or 4 points were rounded to four figures, this is as close to the exact
solution as we possibly can expect and thus verifies the assumption of second
order convergence. First order derivatives from two nodal points and second
order derivatives fram three are generally of first order accuracy. A second

order accuracy is obtained by a favorable choice of nodes and integration

points. This type of phenomenon is referred to as superconvergence in
Reference 8. By use of tg- solutions corresponding to very coarse nodal

spacing, and the assumption of second order accuracy, we are in this case
able to predict a very accurate result through extrapolation. This method
is referred to as Richardson's extrapolation.

In the two-dimensional case, it is more difficult to utilize stress windows
in order to obtain superconvergence. We will briefly discuss the problems

involved in the definition of efficient finite difference schemes for
rectangular nets with uniform spacing. (In the case of nonuniform spacing,
it is possible to make use of the same expressions by mapping the shell upon a
dcmain with a suitable definition of a distance.) Exanples of two-dimensional

finite difference schemes are shown in Figure 7. The scheme used in Figure 7a
defines the inplane displacements at half-stations. A rectangular integration
scheme is used, and the strain energy is defined at the w-node at the center
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SCHEME i. (Half -Station)

/7/ x w Def ined
'/7 o u,v Defined

/ Integration Area

SCHEME 2 (HalGf-Station by NooP.)

7 ~ ///x w Def ined
o u Def ined

/X""'' ~\. \\\ 0 v Defined

""' Integration Area For Shearu

LIntegration Area For Direct (u1I s x etc.)

SCHEME 3 (Whole-Station)

x u,v,w Defined

Integration Area For Membrane Strain

'_Integrationi Area For Bending Strain
I Energy

Figure 7. T wo-D Finite Difference SChs
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of the figure. This point then represents a stress window for bending as well

as nmbrane strains. There is one obvious weakness in this s, ' ne. The

membrane strain Ex, for example, at the integration point miust be obtained

as an average of its values at points A and B. .While this operation is

still of second order accuracy the coefficient of the error term is increased.

This problem is eliminated in the modified half-station sche introduced in

Reference 9 by Noor (Figure 7b). However, both the half-station schemes shown

here are somewhat inefficient for nonlinear or stability analysis. It is

sufficient for illustration of this problem to consider a straight beam element

with

2 2
= U'x + 1/2(u2x +W, ) (39)

For definition of the membrane strain ex, we need to express both the spatial

derivatives u, x and w,x at the same integration points. If w is defined at

the node points and u at half-stations, it is not possible to use the most

favorable expression for u,x as well as for w,x.

By introduction of the whole-station, illustrated in Figure 7c, both these

problems are eliminated. With the membrane and bending energies integrated

over different sets of integration points, it is possible to make use of the

stress window for u, x as well as for w,x . This results in much better

convergence for the buckling load as illustrated in Table 2.

TABLE 2

BUQUJING LOAMS VERSUS GRID SIZE FOR
AXIALLY LOADED CYLINDRICAL PANELS

Grid Half-Station Whole Station
Axial x Circumf. Figure 7a Figure 7c

10 x 5 350 825
12 x 6 525 875
16 x 8 770 925
20 x 10 865 945
32 x 16 960 960
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We conclude from the results in Table 2 that for similar accuracy we can use

almost twice as large grid spacing with the %hole-station scheme. Also, it

appears that the error in both cases varies quadratically with the grid spacing.

However, the eigenvalues were not computed with sufficient accuracy to give

reliable informatiun about the rate of convergence.

Unfortunately, the whole-station scheme becomes less efficient if the constitu-

tive relations contain terms that couple force and moment resultants (such as

eccentrically stiffened shells). This problem occurs because the strain energy

then includes products of first order derivatives of in-plane and normal

displacements. It appears possible to circumvent this problem, but since the

interest largely has shifted to finite element formulations, this search has

not been vigorously pursued.

Another problem is related to the integration of the membrane strain energy

by use of the rectangle rule, or as cbserved above, by Gaussian integration

with only one point. A polynomial that matches the function values at all

four corners must include at least one second order term. Therefore, this is

a case of reduced integration allowing a nonzero deformation pattern with

vanishing strain energy. This pattern is defined by u = clxy and v = c2xy,

where x and y are space coordinates with x=y=O at the integration point.

Such a deformation is referred to as a mechanism, and if allowed, sometimes

leads to spurious solutions. The deformation pattern is usually prevented

by displacement constraints on shell boundaries and therefore it is somewhat

questionable whether it is worthwhile to remedy the situation by use of

integration with four Gaussian points.
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Section VII

FINITE ELEMET ANALYSIS

In the previous paragraph it is demnstrated that for maximum efficiency in a

finite difference discretization it is imnportant to choose the position of

each control point (or integration point) judiciously. It is imrportant also

that the functions and their derivatives are expressed in terms of the function

values at a suitable set of neighboring nodes. The major flaw in the Whole-

station schm of the previous section was that both factors in term

representing coupling between bending and membrane action cannot be represented

by the most efficient expression at the same integration points.

Continuing tht- search for a better formrulation we way consider the scheme

illustrated in the one dimensional case in Figure 8. One integration interval

iEF shown in the figure. According to Equation (8) the second order derivative

of the lateral displacement is of third order accuracy at the integration

points. Th first order derivative of the lateral displacement based on the

same four freedoms is at least of third order accuracy anywhere in the

interval. Based on three function values, at the midpoint and at the end

points of the interval, first order derivatives (of inplane displacements)

are of third order accuracy at the Gaussian points for two-point integration

[compare the discussion following Equation (11) . As a consequence all

quantities included in the strain energy are of third order accuracy at the

two Gaussian points.
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O--- Integration Area

.=.._ ~~~ /l 2 )0 /(2P)

o Integration points

X Node points for lateral displacements
and their first order derivatives

o Node points for inplane displacements

Figure 8. A Finite Difference Scheme with Third Order Accuracy

Characteristic for the scheme in Figure 8 is that the derivatives at all

integration points within any integration interval are based on the same

system of neighboring nodal values, and that no nodal values outside of the

integration area are engaged in the formulation. Due to these properties the

formulation adheres in the strictest sense to the rules that define a

finite element procedure. However, these rules are saewhat artificial and

there appears to be no meaningful distinction between the finite element and

the energy based finite difference analyses. In Reference 10 Felippa refers

to this finite difference procedure as finite elements with extended support

because the energy density at the integration points is expressed in terms of

nodal displacement freedomes outside of the closed domain of the element.

We may refer to configurations that satisfy the stricter rule as self-contained

elements.

It may be noticed at this point that the finite difference formulation for the

membrane energy in the two-divensional scheme is a self-contained finite

element. In the bending part on the other hand the energy expression is based

on freedot.s at nodes outside the element boundaries.
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It is clear then, that the finite element method could have been derived

through a specialization or ref inement of the finite difference energy method.

As will be seen in the folawing it could also have been the result of a

specialization of the Rayleigh-Ritz method. In either case, it would have

been directly applicable for solution of any set of ordinary or partial

differential equations derivable from a potential. However, in contrast to

the Rayleigh-Ritz procedure and the finite difference method the finite element

method was originally derived by means of physical and largely heuristic

considerations in the field of structural mechanics rather than in the field

of applied mathemiatics. As an afterthought the method was given a mathern--

atical interpretation (Ref erence 11). This led to considerable ref inement

of the method and made possible the extension to problems outside of the

field of structural mechanics.

The mathematical interpretation of the finite element method is based on the

Ritz principle. While the heuristic mechanical approach may have great appeal

to many engineers, the best understanding of the method, its scope and its

convergence properties is obtained if it is presented as a special form of the

Rayleigh-Ritz, method, ituch in the same way as in the book by Strang and Fix

(Ref erence 6). From this point of view, the finite element method entails the

definition of a set of trial functions, complete in the sense that it contains

at least one function arbitrarily close to any admissible solution (displacement

field). The solution of the problem is represented by that member of the set

of trial functions which renders the functional (energy expression) stationary.

Typical for the finite element method is that the trial functions are obtained

as a linear combination of locally defined basis functions. That is, each

basis function is zero over the major part of the domnain. The advantage with

this arrangement is that most of the basis functions are uncoupled, and thus,

the coefficient matrix of the final. equation system has a relatively narrow

bandwidth. Also, the system is generally well conditioned.
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Section VIII
I ONE-DLW-ICNAL P ROBLEMS

For the purpose of definir local basis functions, the domain is subdivided

into a number of intervals or subdcains called finite elements. Once the

domain has beer -;) divided, the unknown function within each element can be

expressed, for ..ample, in term of local power series with unknown coefficients.

Each local power series is constrained by the condition that at the endpoint

of the interval its sum equals the discrete value of the solution functions

fi at corresponding node point. The nodal values of the function and the

free coefficients in the power series are the degrees of freedom of the system

with respect to which the functional is minimized. If additional constraints

on these freedom are introduced as dictated by boundary conditions, the trial

functions so obtained form a omplete set of admissible functions. With a

fixed subdivision, a mesh, the finite element method properly applied would

converge with increasing order of the local approximations. In such a case
we have p-convergence. If the mesh is coarse, a large number of terms may be

needed in the power series, then the band width of the equation system becoves

large and also the system may become ill-conditioned.

A more common practice is to use a fixed form of the local shape functions.

In that case h-convergence is obtained with gradually refined mesh spacing.

Or rather, the mesh is made fine enough so the analyst feels reasonably

certain of obtaining a solution of satisfactory accuracy.

In the simple one-dimensional case with only first order derivatives the

basis functions may be linear as shown in Figure 9. The value of >n is equal

to unity at node n and zero at all other nodes.
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It is clear then, that the finite element method could have been derived

through a specialization or ref inement of the finite difference energy method.

As will be seen in the folbowing it could also have been the result of a

specialization of the Rayleigh-Ritz method. in either case, it would have

been directly applicable for solution of any set of ordinary or partial

differential equations derivable from a potential. How.ev.er, in contrast to

the Rayleigh-Ritz procedure and the finite difference method the f-~nite element

method was originally derived by means of physical and largely heuristic

considerations in the field of structural mechanics rather than in the field

of applied mathematics. As an afterthought the method was given a mathem-

atical interpretation (Reference 11). This led to considerable ref inemnt

of the method and made possible the extension to problems outside of the

field of structural mechanics.

The mathematical interpretation of the finite element method is based on the

Ritz principle. While the heuristic mechanical approach may have great appeal

to many engineers, the best understanding of the method, its scope and its

convergence properties is obtained if it is presented as a special form of the

Rayleigh-Ritz method, rmch in the same way as in the book by Strang and Fix

(Reference 6). Fran this point of view, the finite element method entails the

definition of a set of trial functions, complete in the sense that it contains

at least one function arbitrarily close to any admissible solution (displacement

field). The solution of the problem is represented by that member of the set

of trial functions which renders the functional (energy expression) stationary.

Typical for the finite element method is that the trial functions are obtained

as a linear combination of locally defined basis functions. That is, each

basis function is zero over the major part of the danain. The advantage with

this arrangement is that most of the basis functions are uncoupled, and thus,

the coefficient matrix of the final equation system has a relatively narrow

bandwidth. Also, the system is generally well conditioned.
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Figure 9. Linear Basis Function On

The trial functions (with f1 = N = 0) have the form

fN = N anon  where (40)
n= 2

(x - xn - l)/(xn - Xn - 1) for xn _- 1 - x <x n

on (XN + 1 - x)/(xn + I - Xn) for xn < x <x n + 1

0 elsewhere

This set consists of all piecewise linear functions. It is complete since,

with decreasing mesh spacing (increasing N) any continuous function can be

arbitrarily closely approximated. The trial functions (but not its first

derivatives) are continuous over the domain as required by the Ritz theory.

The local power series are of the form

f. - fi
= f-+i+ (x - xi) (41)

f i+l - X.
1

That is they are of first order in x.
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The trial functions defined in Eq. (40) may be used to determine arbitrarily

closely the function f (x) that minimizes the functional

U =f F(x)f, + G(x)f dx (42)
L

Where L is the total length of the dcmain on which f is defined and F(x),

G(x) are known functions x. After substitution of Equation (40) into

Equation (42) the integral is evaluated over each interval and summed over

the domain. Due to the local characters of the basis functions, the products

are zero everywhere if In-m i< 1. Consequently the terms C aman in the

2functional corresponding to F(x)f2,x will vanish ifin - ml> 1, i.e., the

equation system obtained through minimization (MU/aan = 0, n = 2, N - 1) will

be narrowly banded (tridiagonal).

In analysis of beams, plates and shells the strain energy functional includes

second order derivatives of the lateral displacements. For such problems the

Ritz theory requires that the trial functions belong to the functior space CI .

That is, it is required that the trial functions, as well as their first order

derivatives, are continuous over the domain. In the one dimensional case

(beam analysis) this is readily achieved if the function value as well as its

first order derivative (rotation in beam analysis) are considered as nodal

freedoms. A cubic representation of the lateral disDlacement field can be

obtained by use of the Taylor series approach [campare Equations (6) and (7) ].

Continuity requirements are satisfied since the values of the functions and

their first order derivatives at any node are common to the two elements

connected at the node.
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An equivalent representation can be obtained by use of a set of four shape

functions defined (Figure 10) such that in each function one nodal freedon

equals unity and the other three are zero. The basis function corresponding

to the nth node is

f = (anOn + bn n) (43)

where an is the function value and bn its first order derivative at node n.

Here an and bn represent the degrees of freedom of the system. The bending

moments and the rotations at each of the integration points can be expressed

in terms of these freedoms. The total bending strain energy is then readily

expressed in the form

Ve = {g}T [K] e{g} (44)

where

{g}T= (an), , (an) 2 , (bn) 1 , (bn)2 ] (45)

and K is referred to as the element stiffness matrix. Summation over all

elements gives an assembled or global stiffness matrix (see Reference 12,

for example).

Column buckling analysis includes such term as w 2 [see Equation (35)].wx

With a cubic representation of w this term is a fourth order polynomial,

accurately integrated by use of a Gaussian scheme with three integration

points.

The critical load for a cantilevered column is 1/4 El (n/L) 2. A finite

element buckling analysis of a column with (EI)/(4L2) = 1.0 based on cubic

representation of the lateral displacement and three Gaussian points gives the

results shown in Table 3.
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TABLE 3

OIUM BUCKLING RESULTS

Number of pERR4
Elements, i PCR E Ei

1 9.943847 .07424 .0742

2 9.874659 .005055 .0809

3 9.870620 .001016 .0823

4 9.869928 .000323 .0827

9 9.869617 .000013 .0853

2
With increasing number of elements the accurate solution, PCR = 2 = 9.869604

is rapidly approached. It appears that the error times the fourth power of

the number of elements is almost a constant. This would indicate that the

error is of the fourth order rather than third as expected, may be samewhat

fortuitously. With very coarse spacing the lowest order term is not the

dcminating error and with very fine spacing the accuracy may be governed by

round off errors. As a ccmprcmise, we base an extrapolation on the values

corresponding to 3 and 4 elements. The assumption of fourth order accuracy

then leads to a value of 9.869612 for the critical load, i.e., the relative

error is less than 10-6.

With only one element, corresponding to two elements per half-wave in the

buckling pattern, the error is still less than one percent. In engineering

analysis such accuracy is generally quite acceptable. However, with a solution

available only for one grid size the analyst does not know whether it is

within the range of acceptable accuracy. Unless a sequence of gradually

refined solutions is available he is not on firm ground.

For analysis of rings or arches it seem natural to develop curved beam

elements. In that case, the special problen of strain energy due to a rigid

body displacement, self-straining, must be considered. For illustration, an

element of a circular arch is shawn in Figure 11.
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If the circular arch is rigidly displaced a distance 6 in the x-direction,

the displacement components are defined by

w = 6 sin 0 (46)

v = 6 cos e

It is not possible with a truncated power series to represent this displace-

ment pattern exactly. As a consequence a rigid body displacement introduces

same strain energy in the element. This situation occurs whenever the

geometry of the element cannot be exactly represented by use of the functions

(usually polynomials) representing the displacement components.

T

, o

Figure 11. Rigid Displacement of Curved Elenent

Elements with the strain energy for rigid body displacements proportional to

same power of h may still give good convergence in most applications. However,

there are cases in which the rigid body displacement of an element is very large

in comparison to the displacements corresponding to element distortion. In

such cases, h-convergence my be very slow for elements in which the rigid

body energy is not exactly zero but proportional to sane power of the nodal

spacing.
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Flat elements are often used to represent curved beams or surfaces. The reason

for this approach is that it simplifies the formulation and also that it

eliminates problems with strain energy under rigid body displacement. Table 4
shows sane results fron a buckling analysis with cubic straight beam elements

of a ring under constant direction pressure. The critical pressure is

PCR_ 4E (47)

R'

The results in Table 4 correspond to a ring with EI/R 3 = 0.25 lbs/in, i.e.,

the exact solution is PCR = 1.0.

TABLE 4

RING BUCKLING RESULTS

Number of
elements, i Error 2

(Over 900 arc) PCR E Ei

4 1.006970 .006970 .1015

6 1.002965 .002968 .1067

8 1.001641 .001641 .1050

10 1.001042 .001042 .1042

We notice that the method now is of second accuracy (Ei 2 is constant) and that

to achieve somewhat less than one percent error it is necessary to use four

elements per half-wave in the buckle pattern. Use of Richardson's extrapola-

tion based on second order accuracy with 8 and 10 elements leads pCR = 1.00002

lbs/in.

As long as each element is self-contained, the order of the accuracy is not

changed if the mesh has a variable spacing. For buckling of a ring under

uniform pressure there is no reason to use a finer spacing in any local region.

A constant mesh spacing gives the more efficient -odel and the results for

rings with the mesh indicated in Figure 12 are shown only for demonstration

of the effect of variable spacing.
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some comnpted bucdding loads are shown in Table 5. The second order accuracy
is maintained. A Richardson extrapolation based on the results for 9 and 12
elements over the 900 arch leads to PCR = 0.99997. Conjarison, with the results
in Table 4 indicates that the results are somewhat less accurate than those

obtained with the finest of the boio spacings used and scmwhat, better than

tho~se obtained with the coarser spacing. The prebucklirq solution for the

variable mesh with 6 elements shows a rather large error in lateral displacement

although the error in the buckling loads is only 0.43%. The ompuated displace-
ments vary from about 7% above to about 7% below the analytic solution

(w= pR 2/EA), being too small in the area with coarse spacing.

450; 2 x m equal spacings

450; m equal spacings

-Symmetry

Figure 12. Ring with Variable Mesh

TABLE 5
BUCaLTNG OF RINGS WITH MRIABLE MESH

Number of
Elemients, i Eo _i2

on 900CREi

6 1.004271 .004271 .1538

9 1.001836 .001836 .1487

12 1.001020 .001020 .1469

40

. .. . . . . .



Section IX

PLANE STRESS PRCBUSL

In plane stress problems the displacement components u, v are functions of

two spatial coordinates x, y. The strain energy is defined in terms of the

first order derivatives u, x Upy, V 1x v, y Consequently, the Ritz theory requires

that the functions u and v are continuous over the danain. The simplest

element for analysis of plane stress problems is the triangular element.

A Taylor series in two dimensions including derivatives up to the first order

contains three terms. Consequently, a displaceent field in which the first

order derivatives are of first order accuracy can be determined from three

nodal function values. The obvious choice then is an element in which the

degrees of freedom are represented by the values of u and v at the corners.

Two adjacent elements have identical values of the displacement components at

both ends of the interface and these components vary linearly with the space

coordinates. Thus, the values of u and v in the two elements are identical

over the entire interface, i.e., u and v are continuous over the damain.

Elements that satisfy the continuity requirements of the Ritz theory are

referred to as conforming elements.

With linear variation of the displacenents all strains (in linear analysis) are

constant within an element. The triangular 6-degree-of-freedan element is

usually referred to as the "Constant Strain Triangle" or the CST-elemnt. As

the strain is constant throughout the element it is obviously sufficient to

use integration with one Gaussian point, i.e., the c.g. of the triangle. This

point is also the stress window where the strain is expressed with a second

order accuracy. In a range of sufficiently small elements the error in analysis

with CST elements varies with the square of the mesh spacing.

Equivalent to the Taylor series approach is the use of linear shape functions.

For triangular elements it is convenient to express these shapefunctions in

terms of so called area coordinates as discussed, for example in Reference 12.

The definition of such coordinates is illustrated in Figure 13.
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Figure 13. Area Coordinates for Triangular Elements

The location of a point P inside the triangle is uniquely determined if two

of the areas of the subtriangles A.i are know~n. Consequently these areas, or

rather the areas normalized with respect to the total area A of the element,

can be used as space coordinates.

S= Aj/A ,n= A 2/A A = 3/A (48)

As the relation + n + =1 holds, the Cartesian coordinates of point P

can be written in the form

[ 1 x 2 x 3 n(49)

y -Yl Y2 Y'3-
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The same interpolation may be used for the displaoeent conponents u and
v, i.e.,

= uI u2 u] (50)
v vI  v 2  v 3 -

where u v. represent the discrete values of the displacement components at
corner i. The inversion of Equation (49) is needed for expression of the
location of Gaussian integration points in terms of the area coordinates.
The inverse is given in Reference 12.

In order to raise the order of accuracy of the triangular plane stress
element it is necessary to add another three freedoms for each displacement
component (there are three second order derivatives). A natural choice then
is to add the displacements at midside nodes on each of the element boundaries.
Figure 14 shows a triangular element with midside nodes and indicates nodal
values of the area coordinates.

Point x y _ n C

1 1 x yl 1  0 0
y 2 x2 Y2 0 1 0

3 x3 Y3 0 0 1

4 x 4 Y4 1/2 1/2 0
5 x 5 Y5 0 1/2 1/2

6 x6 Y6 1/2 0 1/2

P x

Figure 14. Linear Strain Triangle
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The relation between Cartesian and area coordinates is given by:

& (1- 2&)

(1 - n)

1 1 1 (1- 24)
= x 1 x x4  x5 x6  (51)

t 1 yl Y2 Y3 Y4 YS Y6.

Using the corresponding interpolation for the displacement components we

obtain a simple expansion, equivalert to the result of a quadratic Taylor

series approach.

That is

6U= i uipi

6 (52)

where each of the six shape functions

P. = {f(l - 2E) , n(l - , (1 - 2n) , 4 , 4nc , 4 } (53)1

are equal to unity at one of the six nodes and zero at the others.

From Equations (52) and (53) it follows that the displacement canponents

are quadratic with respect to the spatial coordinates. Since two adjacent

elements have three freedms (for each displacement camponent) in common

the linear strain triangle (1ST element) is conforming and the convergence

requirements of the Ritz procedure are satisfied.
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With the same nodal pattern we can define the displacements inside the element

by use of four constant strain triangles. Clearly this gives a less accurate

representation of the strain than the linear variation obtained by use of the

shape functions in Equation (51). we woulid expect therefore that the higher

order representation (the linear strain triangle) should lead to a mrore

efficient analysis.

Triangular plane strain elements with fourth order accuracy require at least

a displacement field based on ten degrees of freedom (there are four third

order derivatives). Such elemients can be derived (see Reference 12, for

example) by introd3uction of a node internal to the triangle and use of two

midside nodes on each side. Alternatively freedoms at midside nodes can be

substituted by displacement derivatives at the corner nodes. This seems to be

undesirable because it involves use of nrmnal strains u, and v, as freedac..

These are generally not defined on boundaries.

Three sided elemients with curved boundaries can be defined in the same way as

the triangular elements. Generally such elements will no~t be free from strain

energy due to a rigid bodly displacement (comp~are the discussion of curved

beam elements above). If the element is rigidly displaced in its plane a strain

free configuration is possible only if the shape functions used for displace-

ment can exactly represent the initial shape of the element boundary. In

other cases an error is introduced which disappears with diminishing gridsize.

The order of the error depends on the order of the power series representing

the displacements. One way to avoid self-straining is referred to as

isoparametric representation. In this procedure the same shape functions are

employed to describe (aproximately) the element boundaries as well as the

inplane displacement configuration. Fbr exam~ple, with IST elem~ents the

element boundaries can be approximated by polyrnials up to the second

order.

The relative efficiency of linear strain triangles versus constant strain

triangles is illustrated in Figure 15. A section of an annular plate as shown

in the figure is clamped at Side 1. The curved sides are free and Side 3
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Figure 15. DeforMatiOn Of Annular Plate
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is subjected to a displacement of 0.1 in. and a rotation of 0.01 radians as

shown. The f igure sho~ws the error in the total reaction force, normal to

Side 1. it appears that for the same accuracy in the results the analysis

with constant strain triangles leads to computer cost that is somne twenty

times higher than it is with linear strain triangles. With E = 107 psi,
v =0.3 and the plate thickness 0.1 in. and a 17 by 17 grid the total reaction

is 52905 lbs. The linear strain triangle (or quadrilateral) should only be

used as the membrane part of a plate elemient and its use should be restricted

to situations in which accurate representation of the bending behavior

requires a grid fine enough for analysis of the membrane behavior with

constant strain elements.

Quadrilateral plane stress elanents can conveniently be defined by combination

of two or movre triangular elements. In case of a linear analysis the freedomns

correspnding to nodes that become internal to the element can then be

eliminated by condensation. That is, they can be eliminated through energy

minimization on the element level and do not appear as freedans in the final

trial functions.

it is, of course, also possible to derive quadrilateral elements directly

in the same way as was done for triangular elements. In order that the

displacements at nodes be compatible with that of adjacent elements it is

necessary that the displacements at all four corners be included as degrees

of freedom. Consequently, it is generally not possible to restrict the

displacement pattern to one that represents constant strain. Using the

Taylor series approach we must include the function itself, the two first

order derivatives and at least one of the second order derivatives. To avoid

directional bias we must choose the mixed derivative on the right hand side

of Equation (4), i.e., the bilinear expansion. For convenience we introduce

the coordinate system C, n with the property that & equals -1 and +1 respec-

tively on two opposite sides and n similarly equals -1 and +1 on the other

two sides as shown in Figure 16. The coordinates E and ni are expressed in

terms of the x and y coordinates at the elenent corners by
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4 4
x x.P. ;y yip i (54)i=l ix i=1

where

P1 P3 
=  (l+ ) (1-n)

P 2  (1 + ) ( -n) P 1 (1 -n)

Similarly a displacement c mponent can be defined by

4
U uiPi  (55)

i=l 3

where the u. are the nodal values of the displacement u. In this case

identical interpolating polynomials are used for displacements and

coordinates (isoparametric representation). The mapping (Figure 16)

fram the x,y to the E,n space is referred to as isoparametric mapping.

Two adjacent element have cammon displacements at the endpoints of the

interface. Since either E or n is constant along any element boundary

the displacement field is linear along boundaries and an element based

on these shape functions is conforming.

In order to achieve second order accuracy irn the definition of the first order

derivatives anywhere inside the element we must include at least six degrees

of freedom. Directional bias will result unless the number of nodes is

divisible by four, a possible node at the element midpoint not counted.

Consequently the higher order element should have 8 (or 9) nodes. It

seems logical to add a node at the middle of each side.

The higher order representation of the displacements allows parabolic

approximation of curved element boundaries without self-straining,

48



y

x 1.0 1.

x 3Y3-1.0

x4 Y4

Figure 16. Isopararretric Mapping
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In general, third order accuracy in the first order derivatives requires

that at least ten degrees of freedom are utilized in the definition of the

displaceent field. However, in the one-dimensional case, the three point

scheme for inplane displacements shawn in Figure 8 results in an expression

for the first order derivative with a third order error at the two Gaussian

point. Therefore, we can expect a third order accuracy In the elenmt with

nine nvws. These linear strain quadrilateral elements are referred to as

the ISQ8 and ISQ9 elements. With two inplane displacement components these

elements have 16 and 18 degrees of freedms, respectively.
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section x

PL1ATE AND SHEIL ELEENTIS

The energy functional based on plate or shell theory contains changes of curva-

ture of the reference surface, i.e. second order derivatives of the lateral

displacmnts. Consequently, the trial functions as well as their first order

spatial derivatives must be continuous across element boundaries in order that
convergence with decreasing grid size to the correct solution will follow

from the Ritz theory. Efforts to define efficient and conforming plate or

shell elements has led to a great proliferation of bending element configura-

tions.

In linear analysis of flat hoimogenous plates, with the maidsurface as reference

surface, membrane and bendiing behavior are uncoupled. The bending energy in

the plate depend~s exclusively on the lateral displacem~ent w and the membrane

energy exclusively on the inpiane displacements u and v. In that case it is

possible to superimpose bending elements onto the membrane (plane stress)

elements discussed in the preceding paragraph~s. In nonlinear analysis the
membrane energy, due to stretching of the middle surface, depends on the

lateral displacmnt pattern and in analysis of curved elements the bending

energy is a function of inplane as well as lateral displacements.

Bending and membrane elem~ents then have common degrees of freedom but as long

as the constitutive equ~ations for the shell wall do not introduce membrane-

bending coupling it is still possible to superimpose independent bending and

memibrane elements. Mobst problems involved in the development of finite element

configurations for shell or plate analysis are independent of this coupling.

Therefore, it is helpful to discuss some aspects of these configurations in the

less ample framework of pure bending analysis.

Plate bending elements generally include as degrees of freedomn rotations

(displacement derivatives) as well as lateral displacements. In a triangular

element the numnber of degrees of freedom, must be divisible by three, those

at a possible inod at the midpoint of the element not counted, as otherwise
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directional bias would occur. Second order-derivatives must be determined

at least to a first order accuracy. As a consequence the lowest possible

number of degrees of freedom is six.

The element in Figure 17 shown in a Cartesian system x, y, z then represents

the simplest possible triangular bending element. Use of a Taylor series

approach leads to a uniquely determined complete quadratic representation of

the lateral displacement field, that is

w = a + blx + b2Y + c x 2 + c1 2xy + c2 2Y2  (56)

W3

z y

BB2

Figure 17. Constant Curvature Triangular Element

The changes of curvatures as second order spatial derivaties of w are all

constant over the element surface. Along a side, between nodes 1 and 2

(y = 0) for example, the rotation around the element boundary is of the form

W'y = b1 + c 12x (57)

That is, the slope varies linearly. However, two adjacent element have

only one rotational freedom in common. Therefore, the constant bending

element is nonconforming. Similar problems are encountered when triangular

bending elements of higher order are developed. Elements with nine and

twelve freedoms are shown in Figure 18.
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z y

Figure 18. Triangular Elements with Nine (a) and Twelve (b)
Degrees of Freedom

A complete cubic can be determined by use of ten degrees of freedom. Thus the
displacement field in the nine degrees of freedan element, can be determined

by use of a cubic Taylor series only after a constraint is introxduced. For

example, the coefficients for the x 2y or xy 2terms may be required to be

identical. in that case the expression for the rotation around the elemrent

boundary contains terms which are second order in a coordinate along the boundary.

As only two rotational freedoms are o~mmn between adjacent elemnts rotational

nonconformity is allowed.

with twelve degree of freedom element two quartic terms are included. Either

of the pairs x 4, y 4or x 3y, xy 3can be included but in any case the edge

rotation becomes cubic in terms of the spatial coordinate along the boundary.

As four coefficients are required to determine uniquely a cubic and adjacent

elements only have three rotational freedoms in cam-on, the elemient is non-

conforming.
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It is possible to eliminate slope nonconformity through introduction of displace-

ment constraints or to minimize its effect through introduction of penalty

functions. The latter approach can be applied to the twelve degrees of freedom

element. A fictitious term

2 2
AU = C1 a31 + C a (58)131 2 13

3
is added to the energy, where a31 and a13 are the coefficients in the x y

and xy3 terms while C1 and C2 are constants chosen large enough to provide

a sufficient penalty on the strain energy due to the quartic terms.

Introduction of constraints (or penalty functions) to achieve conformity

lowers the order of the accuracy of the local approximation. Since the six

degree of freedom bending triangle is of first order accuracy only it cannot

be made conforming by introduction of constraints.

A conforming triangular bending element, introduced by Clough and Tocher in

Reference 13, is based on partition into three subtriangles. This element is

discussed in same detail in Reference 12. Each subtriangle has 10 degrees

of freedom as shown in Figure 19 allowing a complete cubic representation.

The directional bias in the subtriangles is eliminated when they are oombined

into one element. Since the internal subtriangle boundaries do not include

midpoint rotations as freedom it is necessary for rotational compatibility

to constrain the element so that the rotation varies linearly along these

boundaries. The combined element has 3 freedoms at each corner, 3 freedoms

at the element midpoint and 3 midside rotational freedoms for a total of

15 freedcms. For linear analysis the freedoms at the element midpoint can be

eliminated on the element level through condensation. While the introduction

of contraints reduces the order of accuracy, condensation does not have any

effect on the final solution.
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Figure 19. The ClOiih-LbCher Triangular Bending Element
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Section XI

QUADRIIATERAL BENDING EID.ENTS

The number of freedoms in a quadrilateral element must be divisible by four

in order that directional bias be avoided (possible freedoms at an element

midpoint node discarded). A bending element must as a minimum include all six

terms up to the second order. Consequently the simplest possible quadrilateral

element would have 8 degrees of freedoms. Experience with constant strain

elements for plane stress analysis indicates that such an elerent is not

likely to be very efficient.

The first element for analysis of the bending of flat plates was a rectangular

element with the freedom pattern illustrated in Figure 20. As the element has

12 degrees of freedom, the displacement pattern can, as iin the triangular element

with the same number of freedoms be represented by a complete cubic and two
3 3quartic terms, for example, x y and yx 3 . Such an element was introduced

(Reference 14) and successfully applied in plate bending analysis before the

finite element method was established as a form of the Ritz procedure. We

refer to this element with the notation QB12 (quadrilateral bending, 12

freedoms). Shape functions for this element equivalent to the Taylor series

solution are presented in Reference 15.

_V V

//

Figure 20. Rectangular Bending Element with
12 Degrees of Freedom (QBl2)
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After the finite element method was given a solid theoretical foundation, the

wisdom in the use of nonconforming element was questioned. Efforts were made

to improve the performance of the bending elements through introduction of

displacement constraints. As the order of accuracy of the local approxima-

tions thus was reduced these efforts were not particularly successful.

Generally the nonconforming elements led to better results within the range

of engineering accuracy.

In the pursuit of more efficient conforming bending elements Clough and Felippa

derived quadrilateral elements through the conbination of the Clough-Tocher

triangular elements. Either two or four triangles are combined to form

quadrilateral elements and for linear analysis internal freedoms are eliminated

through condensation. After condensation the elements have 12 degrees of

freeda and we refer to them as the CF12,2 or CF12,4 elements depending on

the number of subtriangles used. With three rotational freedams along each

side and only quadratic representation of the rotations(cubic in the displace-

ments) the element is conforming. The disadvantage with the element is that

the subtriangle approach makes it necessary to use a large nunber of integration

points resulting in excessive owuter time.

A conforming bending element was presented by Bogner, Fox and Schnit in

Reference 16. A theory for curved shells is utilized in the derivation of the

stiffness matrix. The strain energy due to rigid body displacement is exactly

zero (independent of grid size) only for flat rectangular elements. Shape

functions are used for interpolation to ensure conformity. The only version

of the element that can be seriously considered is one BFS16 with 16 degrees

of freedom in which the twist, w,xy, has been added as a freedom at each

node. While the interpolating polynamials contain terms up to the sixth order

the rotation along the shell boundary is cubic.

Same results obtained with this element are presented in Reference 16. A flat

plate 20 x 20 in 0.1 in. thick with clamped edges is loaded by a uniform

normal pressure of 0.2 psi. The material is characterized by E = 107 psi,
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v = 0.3. The results are shown in Table 6 together with corresponding results

based on analysis with the CF12,2 element.

Table 6
BENDING OF SQUARE PLATE

Number of Elements Midpoint Displacement (in)
(on one quarter of the plate) CF12,2 BFS 16

2 x 2 .035592 .040475

3 x 3 .039713 .040482

4 x 4 .040274 .040487

5 x 5 .040409

6 x 6 .040453

10 x 10 .040485

The convergence with the BFSI6 element is exceptionally good. For example,

the solution based on 16 such elements is as good as one based on 100

CF12,2 elements. Still it appears that the BSF16 element has seen little

use. One reason may be that it is self-straining unless flat and rectangular.

A more important disadvantage is that the twist W is used as a degree of

freedom. This displacement parameter cannot readily be defined on shell

boundaries.
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Section XII

HYBRID METHODS

The finite element method was originally developed as a direct extension of

the methods for analysis of statically determined structures. In these

methods internal forces were introduced as unknowns rather than displacements

(Reference 17, for example). The derivation of equilibrium equations was

based on the principle of minimu complementary energy. While the displace-

ment method has become the dcminant procedure in finite element analysis the

so called force method still shows same signs of life. A plate element based

on the principle was reoently presented in Reference 18.

The difficulties enountered in satisfying continuity conditions at boundaries

between adjacent elements for shell or plate bending elements has motivated

the pursuit of other avenues, such as the developmnt of mixed or hybrid

methods in which both displacement and force fields are assumed. The hybrid

method developed by Pian and Tong (Reference 19) represents an important

contribution in finite el-ent t r-hnology. In this method the disnlacaent

freedoms are not directly usec- for definition of the displacements inside the

element. A stress field with :nietermined ooefficients is assumed in addition

to the nodal displacements on the element boundary. The unknown coefficients

ii the stress field are determined through energy minimization on the element

level with the nodal displacements defining the boundary conditions. The

element stiffness matrix so obtained is based on the nodal displacement

freedoms.

As the principle of complementary strain energy is to be applied the strain

energy is written in terms of stresses, i.e.,

U = [ [N] {a) dv (59)
V

wher. [NJ is the matrix of cxoaliance. That is the inverse of the stiffness
ma rix.

{o}= [C] {c} , N = [C] (61
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The stress vector is defined in terms ox a number of undetermined coefficients

{W} (stress freedoms)

{G} = [P] {6} (61)

where the elements of the matrix IP] are functions (polynomials) of the

spatial coordinates similar to the displacenent shape functions discussed

above. The strain energy in terms of stresses then can be written in

the form

1 {8}T [H] (al (62)

where

H = f [PIT [N] (P] dV (63)

V

The displacements along element boundaries are expressed in terms of the

nodal displacement freedoms. Forces along the boundaries are obtained

by substitution of the appropriate values of the spatial coordinates

in the expression for the stress field,Equation (61). After integration

along element boundaries the work done by these boundary forces is

readily obtained

= {W}T [T {q} (64)

where T{q} represents an interpolation of the displacements along

element boundaries in terms of the vector of nodal freedoms {q}.

Minimization of the complementary energy

V = U - Q (65)
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leads to

{W} = [HI [T] {q} (66)

and the total strain energy can be written as

U = {q)T [K] (q) (67)

where

K = [T] T [H] - I [T] (68)

is the element stiffness matrix corresponding to the displacement freedoms q.

While the use of forces as freedoms leads to an underestimate of the strain

energy, the displacement method, provided the rules of the Ritz theory are

followed, overestimates the strain energy. The hybrid method as presented
above gives results that are bracketed by those obtained fran force and

displacement methods. Consequently, the convergence in many cases is

very good. A rectangular bending element of this type was presented in
Reference 19. This element has 12 displacement freedoms and up to 23

coefficients in the stress field. A general quadrilateral version of the
element is used in the SPAR computer program (Reference 20). We refer to
this element by the notation QHI2 (quadrilateral hybrid, 12 freedas).
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Section XIII

USE OF NCNCONFOIR ING EETMSI

After the finite element analysis was given a firm theoretical foundation as a

form of the Ritz procedure, the question of possible convergence of ronconform-

ing elements has been a subject of considerable interest (References 6 and 21,

for example). The process of integration of the energy over the individual

elemients followed by a surmation over all elemients leaves out possible work

done by forces on the elemnt boundaries. For conforming elements this iuork

vanishes because contributions fromn adjacent elements cancel one another.

if the elements are nonconforming the work corresponding to the forces on the

boundary and the discontinuity in displacement (or rotation) is left out of the

energy balance. The procedure can converge to the correct solution only if

this work vanishes with diinishing grid size.

In Reference 22 Irons and his coworkers suggested a simnple test to be applied

to nonconforming elemnts. This test has later becme known as the patch test

and it appears that the passing of this test is a sufficient but not always

necessary convergence requirement. As first presented the patch test required

that for any patch of elements subjected to displacmnts corresponding to

constant strain (constant curvature for bending elements) on its boundary, the

solution everywhere in the inte. ;or should be accurate, i.e.*, the strain is

constant throughout the patch.

In Reference 6 Strang and Fix show that the patch test is equivalent to the

requirement that the work corresponding to displacement discontinuities along

element bo~undaries vanishes. A rectangular element developed by Wilson

(Reference 23) is used for detonstration. Wilson raises the order of the

bilinear plane stress elements (Figure 16) by addition of the two so called

bubble modes

P 5  U 2s and P = (1r 2 ) (69)
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These are clearly wonconforming modes, independent on the nodal displacement

cxmnents. The formulation was suggested for rectangular elements only and

for such elements it is shovm in Reference 6 that the addition of the noncon-

forming bubble modes results in a considerable improvement in the convergence

rate.

It is sha~m in Reference 6 that "the energy of the discontinuity" vanishes

identically when the integration is carried over the entire boundary. For a
general quadrilateral ele2 at on the other hand, the integral over the boundary

can be represented as a constant times the difference in the lengths of opposite

sides.

Consequently, the contribution to the energy from one element is proportional to

the grid spacing. However, the total length of all element boundaries is pro-

portional to Ih1. Therefore, it does not seem likely in any given case that

analysis based on nonrectangular elements with bubble modes will converge to

the correct solution. A modification of this approach presented in Reference 24

makes it possible to use the bubble modes also with nmrectangular elements.

A relatively simple and often used nonconforming bending element is the quadri-

lateral 12 degree of freedom element QBl2 (see Figure 20). For this element the

lateral displacement component can be expressed in the form

C2 2
w C % + Clx + c2y + + c 4 xy + c 5y (70)

+ C6O3 + Cx2y 
+ C8xY2 + C9 y 3

+ C1 0x3y + C

The element edge rotation is represented by the normal derivative, that is, if the

side makes an angle a with the y-axis

w/a W = aw/ax cos a + w/;y sin a (71)

TWo adjacent elements have matching slopes at the end points of the common

boundary. Consequently t:,m of lower than second order in the coordinate

along the boundary do not cause any slope discontinuity. The mismatch in
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slope between adjacent elements is of the form

A = C 2 + higher order terms (72)

To obtain the energy of the discontinuity we multiply the slope discontinuity
by the average bending mment M (higher order terms are irrelevant) and

integrate the product over the length h of the interface. The result is
3of the form Co h4 . As the total length of element boundaries is proportional

to 1/h , the total energy of the discontinuity is proportional to the grid

spacing. We expect therefore that the use of the QB12 element will lead to

convergence of first order, i.e., E = O(h).

If the element is rectangular it passes the patch test as posed in

Reference 6. Consequently, any displacement pattern with constant curvature

is exactly represented, independently of grid size, i.e., the accuracy is

at least of second order. The general quadrilateral element passes a milder

form of the test, requiring that the error in energy introduced by the

nonconforming modes is proportional to same power n>0 of the gridsize.

The performaw: of the QB12 element is illustrated here in a few examples.

A simply supported square plate 5 x 5 in. and 0.1 in. thick is made of a

material with E = 107 psi and v = 0.3. The plate is subjected to unidirec-

tional compression. In that case (see Reference 25 for example) the

critical load is

ir2Eh3
NCR = 4 = 1446.0958 lb/in. (73)

12(1 - v2 )b2

The buckling mode may be assumed symmetric about two planes. Hence, in the

finite element analysis it is sufficient to consider a quarter model of the

plate. Some results are shown in Table 7, where N represents the number of

elements, in each direction, on this quarter model.
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TABLE 7

BJuacLI OF SQJARE PLATE

No. of Elements QB12 QH12

N x N Critical Load Error E Critical load Error EN

E E

2 x 2 1391.19 54.91 220 1451.04 4.94 79

4 x 4 1431.44 14.66 235 1446.41 .31 79

6 x 6 1439.50 6.60 238 1446.16 .06 78

8 x 8 1442.37 3.73 239

10 x 10 1443.71 2.39 239

Richardson's extrapolation based on the results for N = 8 and N = 10 with the

assumption of second order convergence leads to NcR = 1446.100, i.e., to an

error of 0.00028 percent. It can be little doubt then that the use of this

nonconforming element leads to a second order convergence. For a one percent

error we need four elements per quarter wave. Four elements per half wave

gives a barely acceptable 3.8 percent error.

Table 7 shows also results obtained with the hybrid element QP1{2. In this case

convergence is from above and dearly a fourth order accuracy is obtained. With

four elements per halfwave the error is as small as 0.34 percent. For the same

grid the runtime with the QSl2 element is only slightly larger than with QB12.

The problem of buckling of a spherical shell under uniform external pressure

was considered in a study of the convergence behavior of the nonrectanguar

QBI2 element. In order that effects of approximations in the inplane displace-

meit field be eliminated, such displacements were suppressed in the buckling

mode. The computed buckling loads, then are physically meaningless but this does
not mar the conclusions about the nUmerical behavior of the bending element. A

spherical segment with radius 10 in., thickness 0.1 in., Young's modulus 10 7 psi

and Poisson's ratio 0.3 was analyzed. Circumferentially the segment covers 9

degrees. In the direction of the meridian the segment covers the range 36 to
45 degrees measured from the apex. This segmnt buckles in a mode with one half

wave in the meridional and one quarter wave in the circumferential direction.

Therefore, it was assumed that the buckling mode was antisymmetric with respect

to one of the sides along a meridian. Symmetry conditions were applied at the

other three sides. Buckling loads are shown in Table 8.
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TABLE 8

BUCKLING OF SPHERICAL SHELL SEGMENT
Number of
Elements Critical Error

NxM Toad %

4 x 2 9034.1 12.82

6 x 3 9704.4 6.35

8 x 4 9965.9 3.83

10 x 5 10091.9 2.61

12 x 6 10161.7 1.94

16 x 8 10232.1 1.26

20 x 10 10265.0 0.95

24 x 12 10283.3 0.77

28 x 14 10295.0 0.65

32 x 16 10303.5 0.57

It appears that the convergence is of first order and for grids as fine as

24 x 12 or better the first order term dominates the error. In that case the

buckling load would be 10362.6 psi. The errors given in the table are based

on this value. The convergence in this case is much worse than it is with

rectangular elements. Eight elements per halfwave correspond to an error of

3.8%, and for a one percent accuracy we need 20 elements per half wave.

The results fran two linear plate bending analyses are shown in Figure 21.

In one case a quadratic plate with clamped edges is subjected to uniform

lateral pressure. The error in the midpoint displacement is shown as a function

of the number of elements along each side on a quarter model of the plate.

Despite the nonconformity the displacement is underestimated.

The other case is one with nonrectangular elements. The annular plate is

clamped at one of the straight edges and the other three edges are free. The

plate is subjected to a uniform pressure. The error in lateral displacement

at point A is shown in the figure. As a result of rotational nonconformity,

convergence is now fram the opposite direction, i.e., the displacements are

overestimated. However, the convergence is still relatively good
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Figure 21. Error Versus Gridsize in Plate Ending with QB12 Elemients
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presumably because inaccuracies due to the nonconfonnity and approxima. -on

of the deformation mode tend to canmel one another.

For some reason, presently unexplained, the bending analysis of the annular

plate leads to an illonditioned equation systen. With grids 13 x 13 or finer

it was necessary to apply a linear refinement procedure in order to obtain

accurate results (on CDC 175). This problem did not occur in the buckling

analysis of the spherical shell segment. However, with slow convergence for

the spherical shell and conditioning problems in the annular plate analysis

it seems advisable to avoid use of OB12 elements that deviate substantially

fran a rectangular plan form. The rectangular version of the element may

often be unsuitable for buckling analysis because the critical load converges

fran below. This restricts the possibilities to increase the grid spacing

in areas with light loading.
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Section ,CIV

AMAD-TYPE ELrsM

Three-dimensional elements can easily be derived by direct extension of the

isoparametric representation for the plane stress case discussed above

(see Figure 15). Seond order derivatives (curvature changes) do not appear

in the functional, and therefore it is sufficient for convergence that the

displacement caronents themselves are conforminig. There is no requirement

of interelenent caratibility of displacement derivatives (rotations). In

view of the difficulties encountered in the derivation of elem~ents based on

the theory of plates and shells, it appears worthwhile to try to represent

the shell by a singl1e layer of such brick elements (Figure 22).

Figure 22. Isoparametric Brick Elemnent with 20 Nodes

Primarily due to the problem with illcrxlitioned matrices this approach did

at first no~t meet with muich success. The thinner the shell, the less suitable

are the brick elements. This problem was circumented in a publication by
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Ahmad, Zienkiewicz, and Irons (Reference 26) by introduction of the basic

assumptions of the shell theory into the formulation of the brick element

First it is assumed that the energy due to stresses in the direction of the

shell normal can be disregarded. The assumption that normals to the shell
remain straight is also invoked. As a consequence it is possible to express

the displacment components at nodes on the shell surface in terms of displace-

ments and rotation components at the shell reference surface by use of simple

transformation matrices. The set of freedoms referred to in the interface with

a program user is shown in Figure 23a and the equivalent set of basic freedoms

on which the energy expression is based is shown in Figure 23b.

/ U,V at
/ d shell

surfaces

UJVW t8at mid

8182 1 nodes surface

a) "User Freedoms" b) Basic Freedoms

Figure 23. Freedom Patterns in an Ahnad Type Element

The user freedoms are three displacements and two rotations at each of eight

reference surface nodes for a total of 40 freedoms. The basic freedom pattern

contains two freedoms at each of 16 shell surface nodes and one freedom at

each of 8 midsurface nodes, again for a total of 40 freedoms.

70

4--



In a first order shell theory it is assumed that normals remain straight and

normal to the reference surface in the deformed configuration. This means
that the theoty neglects deformattions due to transverse shear stresses.

A second order theory approximately includes transverse shear effects as the

normal is assumed to remain straight but is allowed to rotate with respect to
the shell reference surface. The shell assumptions introduced in the Ahmd

element correspond to those of a second order theory.

A first order shell theory also contains the assumption that the ratio of thick-

ness to shell radius is wall so that it can be neglected in comparison to one.

This assumption is not introduced in an Alroad type element. A more accurate

description of the shell bending deformation is therefore obtained and together

with the inclusion of transverse shear deformation this extends the applicabil-

ity of an analysis with Ahmad type elements to the range of "moderately thick"

shells.

The inclusion of transverse shear deformation introduces a special problem.

The description of the deformation pattern must be general enough to inhibit

the development of excessive transverse shear strain. The presence of such

strains leads to unsatisfactory convergence properties with the early Almad
type elements. In Reference 27 Pawsey circumvents this problem through

introduction of reduced integration. Following Reference 27 we illustrate the
problem in the one dimensional case. We consider the case in which the bend-
ing nrment varies linearly and vanishes at the midpoint of the beam element as

illustrated in Figure 24a.
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Figure 24. hmad Type Beam Element with Linearly Varying Bending moment

The correct solution with the rotations +B, -B, +a at the three nodes is shown
in Figure 24b. Since the shape functions are not sufficiently general to allow

this deformation pattern, the solution represented in Figure 24c is instead

obtained. In this deformation pattern the transverse shear contributes a very

large part to the strain energy. However, Pawsey shows that the correct value

of the shear strain is obtained at the Gaussian points with two-point integration.

A similar problem is encountered for curved beam elements subjected to a

constant bendinmom~ient. For this case Pawsey shows that a spurious normal

memibrane strain develops, but also that this strain vanishes at the two

Gaussian points.

It was established thus in Reference 27 that for the Abmad type element,
convergence with gridsize is considerably better if we use a reduced integra-

tion scheme. For the plate bending element this would mean that eight (two

sets of four points) integration points are used rather than the eighteen

points that would be required for accurate integration of the linear part

of the strain energy. As noted above the use of reduced integration can
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allow the development of strain-free deformatior modes (mechanisms). For

the 8-noded Amad-Pawsey element these are:

1) A membrane deformation mode with

u=(T2 
-1)

(74)
v=(1 E 2)n

2) A bending mode with

1 [( 2) (- 2 ) -1( 2 + n2) (75)

Here and n are nonxdmensional space coordinates chosen such that they

vanish at the midpoint of the element and equal plus or minus unity on

element boundaries. It was shown by Taylor (see Reference 6, p. 189) that

the bending mode is not "contagious", i.e. it occurs only for a single

element. With more than ne element the global stiffness matrix is not

singular for any boundary aonditions suppressing the membrane miode.
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Section XV

FLAT E11EM FOR CURVED SHEL ANALYSIS

Curved shell elements require large amounts of oomputer time for formulation

of the stiffness matrix. Also the use of curved elements introduces the

problem with self straining. Therefore, curves shells have most frequently been

analyzed by use of flat elements. This results in a conformity problem that

seems to be particularly important in nonlinear or stability analysis.

Figure 25 shows two flat elements representing a portion of cylindrical

surface. Rotational compatibility at the nodes is enforced after the ccmpon-

ents of rotation are referred to the same set of coordinates, implying that

(1) - 6(2)) cos (a/2)- (d() + (2)) sin (c,/2) = 0

(76)

(1) - B(2)) cos (oi/2) + ((1) + a(2)) sin (a/2) = 0

where the superscripts (1) and (2) refer to the element number.

When adjacent flat elements meet at an angle, it is necessary to introduce

the normal rotation as a freedon of the systen. A disadvantage with this is

that the normal rotation does not appear in the strain energy expression.

As a consequence the resulting linear equation systen becomes increasingly

ill-conditioned as the angle between the planes of adjacent elements becomes

smaller. Generally, finite element cxmuter codes define a small limit

aoand if a<a,, the rotation Oz is ignored and as an approximation the
conformity constraint becomes '() - (2)

y y
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For two adjacent flat elements at an angle with one another, complete displace-

ment caopatibility requires that along the entire boundary

(V()- v (2 )) cos (a/12) - (W (l) + W (2)) sin (c/2) =0(7

(w(l) - w (2)) cos (a/12) + (V (1) + v(2)) si (a/12) =-0

Clearly, these conditions cannot be satisfied unless v and w along the

interface are represented by polynomials of the same order. Failure to enforce

this oampatibility allows the individual elements to buckle under axial om-

pression as plates with free edges. Displacement conformity can be restored
by introduction of constraints on w. However, this results in a very stiff

element and the buckling load shows rather slow convergence fran above with

decreasing grid size.

On the other hand displacement conformity can be restored by raising the order

of the polynomials representing inplane deformation. With a cubic representing

w it is necessary that third order polynomials are used to represent u in
terms of the y-coordinate and v in terms of the x-coordinate. This can be

achieved through inclusion of normal rotation cctponents as supporting freedams

for the inplane displacement field. This approach was used in the development
at Lockheed Missiles & Space Ompany, Inc of a flat element for thin shell

analysis. The out of plane deformations (bending element) were defined in the

same wey as in the QB12 element discussed above. That is, rotational nonconform-

ity is permitted. The accuracy is of second order for rectangular and first
ordc. for general quadrilateral elements.

Inplane displacements were defined through an extension of the bilinear plane

stress element. The derivatives u,x and v, represent normal strains and

inclusion of these as degrees of freedom would lead to difficulties in the
specification of boundary conditions. On the other hand, the derivatives

-V,x and u,y represent rotations around the normal of short line segments in

the x and y directions, respectively. Unless the shear strain is zero
these two rotation components are distinct and independent of orie another.
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The shear strain is equal to the difference between these rotation components,

i.e., U,y + V, x. If the shear strain is allowed to be discontinous at the

node there can be more than two distinct normal rotation components. Inclusion

of those does not seem to be practical as it leads to great complexities in the

formulation. After introduction of the normal rotations as freedoms, an inplane

displacement field is obtained in which displacements normal to the element

boundaries are cubic in the coordinate along the boundary. The detailed

derivation of the stiffness matrix for the element is given in the Appendix.

The use of the normal rotations as support freedoms for the inplane displacement

field raises the order of the polynomial expressions for these displacements in

one of the coordinates only. As the constant strain elements are known to have

poor convergence properties, the orders of u in the x-direction and v in the

y-direction were raised by addition of tangential displacement freedoms at

midside nodes. The element is referred to here as SH411. Its freedam pattern

is illustrated in Figure 26.

A somewhat simpler version of this element SH410 excludes the midside nodes and

uses only an average normal rotation component at the corner nodes. This means

that u is linear in the x-direction and v is linear in the y-direction, and

also that the shear strain is suppressed at the nodes. This limits the useful-

ness of the element to special cases. The SH411 element has nine and the

SH410 has five integration points. However, it is also possible to use reduced

integration with four points in each of these elements.

The meribrane part of these elements has also been coniAned with the hybrid

bending element. We refer to these elements as SH416 with the more refined

inplane displacen~t field and SH415 with the lower approximation.
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The problen with displacement nonconformity is illustrated here by use of a

study of the convergence with gridsize of the buckling loads for flat and

cylindrical panels subjected to axial compression or shear. Results were

obtained with the elemwents SH410 and SH411 and also with flat elements devel-

oped through combination of the bending elemnt CFI2, discussed above, with

quadrilateral membrane elements obtained through combination of IST or CST

triangles. We refer to these elements as SH420 (with constant strain

triangles) and SH422. Fbr flat panels the buckling nmde does not include

inplane displacements. Therefore, the results with SH411 and SH422 would be

practically the same as those obtained with SH410 and SH420 respectively, and

the elements with higher order representation of inplane displacements are
not included in this comparison.

Results of an analysis of buckling of a flat plate under axial compression are

shown in Table 9.

TABLE 9
BUCKLING OF FLAT PLATE IN COMPRESSICN

Critical Load (lbs/in) with

Grid SH410 SH420 SH440

3 x 3 1391.1934 (2.0) 1454.2594 (2.8)

5 x 5 1431.4386 (4.2) 1446.7181 (7.6) 1449.8566 (8.1)

7 x 7 1439.5026 (8.4) 1446.2242 (16.6) 1442.9518 (14.8)

9 x 9 1442.3723 (20.1) 1446.1372 (29.8) 1442.5526 (25.5)

11 x 11 1443.7136 (32.3) - 1442.4792 (40.4)

13 x 13 - - 1442.4565 (58.7)

15 x 15 1444.9247 (69.9) -

19 x 19 1446.5234 (130.3) -

O 1446.10 - 1442.42

The AHMAD-type element is referred to here as SH440. In the definition of a

grid the mid side nodes in that element have been included, i.e., a 3 x 3 grid

corresponds to only one SH440 element. The run times (CPH on the CDC175
NoS, BE system) are given in parenthesis after the corresponding buckling load.
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The plate dimensions and material properties are the same as those leading to

Equation (74), i.e., the critical load is 1446.10 lbs/in. With the SH440 the

critical load is scmewhat lower since transverse shear deformation is included.

Extrapolation from the results in Table 9 indicates that the critical load

would be 1442.42. To obtain an accuracy in the buckling load of 0.5 percent

the following run times are required

with SH410 8.4 sec

SH420 2.8 sec

SH440 8.1 sec

SH415 2.0 sec

If a higher accuracy were required analysis with the SH410 element would be

considerably more expensive.

Table 10 shows results from buckling analysis of a simply supported flat plate

in shear. The plate dimensions are 5 x 5 inches and the thickness 0.1 in. and

the material properties are E = 107 psi, v = 0.3. The reason that run times

are smaller in this case in comparison to those with the same grid in the axial

compression case is that the convergence in the eigenvalue analysis is much

faster. The results with SH415 indicate fourth order accuracy and extrapolation

from these values we determine the critical loads 3371.3 lbs/in, without and

3339 lbs/in, with transverse shear effect (SH440). The figures in the table then

show that for 0.5 percent accuracy the required computer time is:

with SH410 33 sec

SH420 27 sec

SH440 100 sec

SH415 9 sec

If the accuracy requirement is reduced to 2 percent the corresponding times are:

with SH410 11 sec

SH420 15 sec

SH440 40 sec

SH415 6 sec

80



TABLE 10

BUCLD#3 OF FIAT PLATE IN SHEAR

Critical Load (lbs/in) with
Grid SH410 SH420 SH440 SH415

5 x 5 3182.59 (3.6) 3650.60 (7.5) 53063.0 (7.3) 3544.61 (3.9)

7 x 7 3255.39 (6.5) 3423.80 (15.5) - 346.72 (7.1)

9 x 9 3301.26 (10.9) 3389.11 (27.5) 4093.58 (19.6) 3382.54 (11.8)

11 x 11 3325.28 (16.6) 3379.00 (44.1) - -

13 x 13 3338.92 (24.1) - 3403.48 (40.2) -

15 x 15 3347.31 (32.9) 3373.30 (80.9) 3365.06 (82.0) -

17 x17 - 3352.20 (100.1) -

19 x 19 3356.61 (52.7) 3347.25 (170.1) -
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Results for a cylindrical shell segment under axial compression are shown in

Table 11. The segment represents a omplete cylinder, simply supported at the

edges, with a length of 11.0 in. and a radius of 36 in. The thickness is

0.125 in., Youngs modulus 107 psi, and Poisson's ratio 0.3. It is assumed that

symmetry conditions prevail at midlength and that the cylinder buckles in

15 circumferential waves. Consequently a 5.5 in. long 12 degrees wide

cylindrical segment is considered with symmetry enforced on three sides. The

critical load according to an analytical solution (Reference 24) is 2500.69 lbs/in.

Since the element SH410 in the limit supresses inplane shear in the buckling
mode the critical load converges towards a value that is somewhat too high.

However, the results are surprisingly close to the analytical solution for

all grid-sizes, the error in no case being above 0.3 percent.

Both for SH420 and SH410 it appears that the relatively good performance is
due to a fortuitous and presumably case dependent cancellation of errors in

different directions. Thus it makes little sense to include those in a

cxnmparison of run times for different elements. For 0.5 percent accuracy in

the buckling load the following run times are required.

with SH411 13 sec

SH422 not achieved

SH440 13 sec

SH416 8 sec

For an accuracy of 2 percent the corresponding results are

with SH411 3 sec

SH421 120 sec

SH416 5 sec

Since the elements SH420 and SH422 give good results only in flat plate

analysis and in sae cases may perform extremely poorly, they are not included

in further considerations. However, the triangular version (thL Clough-Tocher

triangle) may be useful in shell configurations that cannot easily be

represented by quadrilateral elements only.
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In order to include effects of a nonuniform strain distribution in the

prebuckling range, a case was also considered in which a cylindrical shell

with axisymmetric imperfections was subjected to axial comression. The

cylinders radius is 36 in. and its thickness 0.125 in. Material data are

E = 107 psi and v = 03. The imperfection is defined by

3W = 0.03125 sin (:f %x/L) [cos (vx/L) - 1] (78)

Results from analysis with the SH410 and SH411 elements are compared to

results with finite differences (STAGSC) in Table 12. The results are not

quite accurate since the analysis does not include nonlinearities in the

prebuckling range. However, the trend is quite clear. The critical load

appears to be about 1255 lbs/in, and with the 5 x 5 grid and SH411 elements

a 2 percent accuracy is obtained. Similar accuracy with the other two
discretization procedures would require a very fine grid spacing. In

comparison to SH410 the SH411 element yields the same accuracy in the final

results with about one fifth of the run time. For a fixed grid size the

STAGSC program requires much less computer time but still, the run time is

SH411 is smaller almost by an order of magnitua .

TABLE 12

BUCKLING OF IMPERFECT CYLINDRICAL SHELL

Critical Load (lbs/in) withFi~nite
Grid SH410 SH411 Differences

3 x 3 - 1651

4 x 4 1931 1299 -

5 x 5 1578 1280 1865

7 x 7 1405 - 1538

8 x 8 1375 --

13 x 13 1316 - 1346

84

- -,- • -P

-- r'i
"

" " :?F,.,., ,/ . ,.. , -" - *- *-,,. - ,,. -,...'.. ,. - ;



-- M

Section XVI

INEXTENS IONAL DEFOM4ATION

Thin shells bend easily but resist stretching. Therefore, deformation modes

tend to be inextensional. For a straight beam element the neutral surface

strain is

ex = U' + 2 (U2 + w,) (79)

2 2
Unless the rotation of the element is very large, u,x << W, x. Inextensional

2
deformation then implies that U, is approximately equal to - 1/2 w, With a

2
third order polyrnmial representing w , w,x is of fourth order. In that

2X
case the relation u x = -1/2 w, can hold everywhere within the element only

if u is represented by a polyrnial of the fifth order. This problem was

first recognized by Haftka et al. in Reference 28. However, accurate

integration of the nonlinear terms would require use of 25 integration points

on a quadrilateral plate element. This leads to excessive canputer time and,

since reduced integration with respect to the nonlinear terms does not

introduce mechanisms in the system, cubic plate bending elements are usually

based on a nine point integration scheme. With a nine point integration

schene it is possible to make the midsurface strain vanish at all integration

points if the inplane displacemnts are represented by cubic shape functions.

The simple case of a cantilever beam subjected to a point load, as shown in

Figure 27 can be used for demonstration of the problem. The results shown

below are obtained by use of a model with two finite elements. The lateral

displacements are represented by a cubic and a three point Gaussian scheme

is used for integration. Linear, quadratic or cubic polynomials are used

for axial displacements. Within the limitations of the theory (a Lagrangian

formulation and the curvature defined as w, xx the case with cubic u gives

exact results. The case of linear u gives pcor results even at rather

moderate values of the rotation at the end point. A two to three degree

rotation appears to define the range of applicability of results obtained

with such an element.
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INEXTENS IONAL, BENDING
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Figure 27. Nonlinear Bend ing of Beam
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The results for a beam element with quadratic representation of u are

close to the accurate solution. However, tbe simple case considered here is

not quite representative and analysis of more ocmrpex structures sho~w that

even with second order polynomials for u and v , a substantial stiffening

due to spurious stretching of the neutral surface can take place even at

rather rmderate rotations. The element SH411 discussed in the preceding

paragraph can be moxdified to be bicubic in the inpiane displacement components

by use of two midside nodes. The only freedom at these nodes would be the

tangential displacements. This would result in a considerable increase in

cczputer time and it appears that the use of reduced integration may be a

more attractive solution.

Reduced integration, with four Gaussian points (i.e., reduction beyond

exact integration of the second order terms in the energy) was introduced as

an option in the elements SH410 and SH4ll. Figures 28 and 29 show soein

results on nonlinear bending of a thin and relatively deep arch. The thick-

ness is 0.125 in. and the width 1.0 in. A solution to this problem,

presented in Reference 29, is indicated by the dotted curve. The results

with SH411 elements are also shown in Figure 28. Only half the arch is rodeled

and the analysis was performed with either four or eight elements on this

model. Clearly the rate of convergence with grid size is much better if the

reduced integration is used, so that spurious stretching of the middle

surface is avoided.

Results frein analyses with SH410 elements are shown in Figure 29. The

difference between use of four or five integration points is surprisingly

large buit even with four points spurious neutral surface stretching cannot

be avoided and the results seem to have little resemblance to actual

structural behavior.-

Although significantly different the results obtained here as well as those

in Reference 29 appear to represent converged solutions (with grid size).

Most likely the discrepancy is due to differences in the basic theory. For

example the definition of the strain ey in Reference 29 does not includie
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the term 1/2 (V, y2 The formulation for SH411 wc temorarily modified throtgh

exclusion of this term. With the modified elemts the compted limit point

is only two percent below the one reported in Reference 29. The deformed

shape at the limit point as computed with SH411 (4 elements, 4 integration

points) is shown in Figure 30.

Further exploration of the use of reduced integration to avoid spurious stretch-

ing of the middle surface indicated even greater advantage for more complex

cases. For example a good estimate of the collapse load for long cylinders

in bending (Brazier effect) can be obtained with a relatively coarse grid

(6 x 6 elements for the example used) with SH411 and with four integration

points. With nine integration points and the same grid the collapse load

is overestimated by a factor of two.

An attempt was also made to solve the arch problem (Figure 30) by use of the

Ahmad type element, SH440. However, even with a very fine grid, 21 points

over the half arch the load displacement curve does not contain a limit point.

It seems that this element has a tendency to "lock" with increasing rotation

of structural elements. At the limit point the maximum rotation in the

deformation pattern is about 35 degrees. Possibly the locking of the element

is due to the fact that the transformation of a vector of rotation oomponents

is valid only in the small rotation range. However, displacement configura-

tions with rotations as large as 35 degrees are not within the range of the

moderate rotation theory. In that case all elements using rotations as

freedam would suffer from this problem in large displacement analysis based

on a Lagrangian formulation. It appears that the elements SH410 and SH420

elements are less sensitive to the locking problem. More light is thrown

on this problem in the following section.
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Section XVII

SHEIL C(XLAPSE ANALYSIS

For a final evaluation of the shell elements, represented by SH411, and the

degenerate brick element (SH440) a couple of cases with strongly nonlinear

behavior were selected. The first one of these is the so called "pear-shaped"

cylinder, first presented as an example case in Reference 30. load displace-

ment curves (Figure 31) are shown from analysis with the SH411 element for three

different grid configurations. The computed failure loads are

with 3 x 27 grid 3586 lbs

5 x 37 grid 2731 lbs

7 x 47 grid 2586 lbs

For moderate values of the load there is no significant difference between

the results for different grid sizes. The convergence difficulties at higher

load levels may be due to the fact that the displacement pattern becomes

more omplex with higher values of the load. It could also be related to the

locking phenomenon discussed in the previous section.

Load displacement curves for the pear-shaped cylinders obtained by use of the

SH1440 element are shown in Figure 32. The failure loads are

with 5 x 37 grid 2657 lbs

7 x 47 grid 2530 lbs

Since the elements appear to have a tendency to lock with increasing values

of the rotation components, the problem of convergence with grid size becomes

complex. It is not possible to relate the error to the grid size alone and

extrapolate with confidence. However, it appears that in both cases the

collapse load is somewhere around 2300 or 2400 ibs, that is close to the

2340 lbs obtained with a STAG5 A analysis based on a 9 x 45 grid reported

in Reference 30. With the same grid size the finite difference program

gives results that are at least as close as those obtained by use of
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any of the two finite elements, at a cost that is an order of magnitude less.

The second case considered is the cylinder with a rectangular cutout for which

analytical as well as experimental results are presented in Reference 31. The

dimensions of the cylinder and the results from analysis with the SH411 element

are shown in Figure 33.

The computed failure loads are

with 11 x 13 grid 3698 lbs
17 x 19 grid 3060 lbs

23 x 27 grid 2922 lbs

29 x 37 grid 2750 lbs

With SH440 elements the following results were obtained

17 x 19 grid 3733 lbs

23 x 29 grid 3098 lbs

Finite difference solutions and experimental results (Reference 31) are in

good agreenent. A finite difference analysis with a 21 x 23 grid gives a

collapse load of 2250 lbs. in good agreemnt with experiment. It is not econ-

omically feasible to obtain a cmverged solution in this case with any of the

finite elements. The true value of the critical load may be somewhat higher

than that obtained in the experiments, but still it appears that the finite

difference approach is vastly more efficient for this type of analysis. The
maxLmn rotations at failure for the two cases discussed in this paragraph are
rather moderate, about 7 degrees in both cases.
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Section XVIII

CUNCLUSIONS AND REOMMENDATICS

More than anything else the results presented in the preceding sections tend

to stress the importance of the choice of discretizati-n procedure in analysis

of shells, particularly when it canes to backling and collapse analysis. It

is shown for example that the price for a buckling analysis with a two percent

accuracy of a cylindrical panel may vary by as much as a factor of 40

depending on the choice of element. While analysis with SH410 requires about

half the run time in comparison with SH411 for buckling of a panel with uniform

prestress, it requires about five times as much if an axially symetric

imperfection is introduced to generate a nonuniform prebuckling stress distri-

bution. Most striking may be is that while the finite element configurations

investigated here result in very efficient analysis of bifurcation buckling

loads they appear to be hopelessly inferior to the finite difference method

(elements with extended support) in nonlinear analysis of shells that undergo

relatively large rotations (5 to 10 degrees) before collapse occurs. It seems
reasonable to assume that this problem is related to the use of shell equations,

based on the moderate rotation assumption together with a Lagrangian formulation.

The finite difference procedure does not include rotations as freedoms. This

may explain why it is less sensitive to these assumptions.

For bifurcation buckling analysis of thin shells the elements SH415 and SH416

are efficient and reliable (SH416 only if the prebuckling membrane strain is

reasonably uniform). Ubile sometimes the elements SH410 and SH411 may lead to

sarewbat more economic analysis, due to the balance between positive and neg-

ative errors, they are for the same reason less reliable. In particular the

tendency to converge from below in many cases is undesirable as it can lead to

spurious local buckling behavior unless a very fine grid is used. Also SHMl0

and SH411 are not suitable if the element planform deviates much from a rectangle.

On the other hand the hybrid forms SH415 and SH416 can not be used without some

penalty on computer time or accuracy for shells exhibiting onupling between
ebrane and bending behavior. For such cases the elements SH410 and SH411 are

recommnded if the elements are close to rectangular.

It must be stressed that the investigation reported here, although extensive, is
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far from exhaustive. For example Iron's Semi-loof element (Reference 32) and

the hierarchy of modified degenerate brick elements recently developed by

Hughes and his coworkers (Reference 33) should be considered. No curved
elemets based on shell theory were included in the study. Except for flat
plates then, the analysis based on the shell elements included is reduced to

a second order accuracy, that is the same as in the finite difference analysis.

For thicker shells the analysis must be based on a second order theory. For

this case the Ahmad type element, SH440, is the only element included in the

investigation that will lead to accurate results (for bifurcation buckling as
wll as nonlinear collapse analysis). Generally, the Ahmad element works well
also for thin shells, and the fact that it is the only choice in some shell

codes has some justification. It is feasible that the relatively slow conver-

gence in plate shear buckling will be cured by inclusion of the ninth node (at

the midpoint). However, with reduced integration this may lead to problems

with mechanisms. Also, it may be noted that the Ahmad type elements will be
penalized in terms of comuter time for shell walls with imrbrane-bending

coupling.

The most disturbing aspect of this investigation is undoubtedly the poor per-

formnce of the finite elements included in the collapse analysis of the pear-

shaped cylinder and the cylinder with a cutout. Since the finite element for-

nulation with the same grid size gives a more accurate description of the de-

formation pattern it should not require a finer grid in the collapse analysis.
There are good grounds therefore to assume that the apparent stiffening of the

structure with increasing rotation can be cured by a nonlinear analysis procedure
that includes "updating of the geometry". The so-called "corotational approach"

advocated by Horrigme and others (Reference 34, for example) appears to be most

prorising since it allows for such updating without modification (with increasing

deformation) of element shape functions.

It is clear that much work remains to be done in the area of discretization

procedures for stability and nonlinear collapse analysis of thin shell structures.

It is recommended here that flat and curved shell elements as well as degenerate

brick elements be introduced in STAGSC-l for analysis of an extended set of
benchmark cases. With the corotational approach the problem with self-straining

of curved elements should be essentially eliminated while a third or fourth

order accuracy is maintained. If such elements do not prove to be substantially
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more eccromic than the flat elements for curved shell analysis the possibilities

of reintroducing finite difference formilaticins must be seriously considered.

However, this alternative seem less attractive because much work would be

needed in order to derive farmulations that are caxcaable to finite elements

in modeling capability. Particularly, prograng procedures involving geometry
updating for problems with large rotations will be considerably more complex

if the elements are nort self-ccntained.
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Appendix

STIFFNESS MATRIX FOR THE QUAF ELEDENT

sThe degrees of freedom of the system are the displacement vectors u
S S

v s, and w on the shell (or plate) and the vector of rotation components
s s s 2

Y1 Y2 B 1 and 0 as shown in Figure Al. These vectors represent the

components of displacements and rotations in a local coordinate x', y', z

system where the x' and y' axes are tangents to the coordinate lines, and

z' is directed along the outward normal. The component of inplane rota-

tion, y or y 2s  through the node point. If a set of surface coordinates

x, y are used for the grid generation, the notation y1 refers to the

rotation of a coordinate line corresponding to constant y and y2s refers

to the rotation of a line corresponding to constant x.

z-,ws

~S

~Fig. Al The Degree. of Freedom
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Next, a flat element is considered with the corners at four node points

as shown in Figure A2. A total of eight nodes are defined on the element

as shown in the figure. A Cartesian system x,y,z is introduced with x,y

.in the directions as shown, and z completing a right-handed system.

KY

© 01

aSIP9E Hum bra O NOME NUMBER

Fig. A2 The Flat Element

The 3x3 matrix T(i) transforms a vector in the system x*, y', z' at corner

i into a vector in the coordinate system x,y,z for the element. The

displacement components at each of the corners are obtained from

V V (Al)

A-2
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The vector ()(1j) corresponds to the rotation of side number I at corner

number J. Thus

02 IT)P) (j

t (. ) j= 1,

02 = CTIJ) s j= 2, 3

(AZ)

(3Dj) (i)

0B2  (T](j) 02. 3

P2  = j 1, 4

03 Y2

The next step is to determine the derivatives of the displacement compon-

ents vith respect to the coordinates C and n vhich are defined so that

- -1 on side 4 and +1 for side 2 and n - -1 on side 1 and +1 for side 3.

A-3

, .,.S. ,-t. . |



That is,

x - <0(1)> {xi)

(A3)

y _ I0> (yi]

where
<€1>= <I/4(1-)(1-Tj), I/4(1+§(1-Tj),

where x i , Yi are the x and y coordinates of the four corners. First the

derivatives are determined with respect to a parameter representing the

distance along the side of the element, see Figure A3.

aw/ar ( 8(1,)
2

Fig. A3 lplane Rotation of x-Coordinate Line

For example, for line 1 at corner 1

v 1)  (1 = 1) i zI  1 ; ' ) o (A4)

A-4
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With the notations

C C cos (or) andci (.A5)

s i = sin (ori) at corner 1:

21r( l) (A6
=1 Z(x - x l)/ c I and consequently (A6)

Zw11 2x 2 -x1/ 1

Bw(1) - (x 2 - x1) 5 ~ l + C (1,1)1 (A?7)

- C., Ot I aI

The derivatives with respect to in are determined in the same way (See

Figure A4).

8(4,1)

iS a4 - y,v
Q14

XU

Fig. A4 Inplene Rotation of y-Coordinate Line

bw() 4(4,1) (4 1) (A9)

Z(y4 -y1 ) e(4,1) - (AIl,

A-5
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Corresponding derivatives at the remaining three corners are then deter-

mined in the same way.

The field of lateral displacement is determined from the lateral displace-

ments and their derivatives with respect to the Cartesian coordinates x

and y at the corner nodes. The chain rule of differentiation yields

[ w~ .]
ax axwt (All)

The transformation matrix J* is obtained as the transpose of the inverse of

[j] (A 12)

and

I- k ' - (A14)

A-6

" -.. ~~ ~~.. - -' - -,'.. " •

... . _t, . :€.'.,,.c! ,,. . . . ** S I



The derivatives of x and y with respect to and n are readily obtained

from Eqs. (A3). The freedoms of the flat element (in addition to w and

its derivatives) are u and v displacements at the corner nodes, the cor-

rection to the inplane tangential displacements at nodes 5, 6, 7, and 8,

and the corner node freedoms corresponding to the boundary line rotations

about the normal to the plate (see Figure Al).

The displacement field that matches these freedoms will now be defined.

A bilinear field is used to match the corner displacement. The biquad-

ratic displacement field has zero displacements at corner nodes. It

represents an addition to the tangential displacements at the midsiue

nodes as determined from the bilinear field. The parameters yu and yv

are the corrections to the displacement field that are necessary in order

that the inplane rotations will match the rotations of boundary lines at

the corners (as determined by 0 3' see Eqs. A2).

Hence, we have

= <()> (uiI + <z0> ft."3 + < v (3) > Y + < (3) > f V

v = <0(1)> (v.I + <o(2)> [t.v] + < 0(3)> f v + < (3)> v U

i = 1, 2, 3, 4 (A15)

Notice that each of the four components of the biquadratic field corres-

ponds to displacements parallel to one of the sides. Likewise, the com-

ponents of the bicubic field include only displacements In a direction

normal to one of the sides. Consequently

.A-7
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(t t = <t t , V2 , t3ca ,t 4 a>

(t ') 
(A 16)[t v  f -t I ,a t 2  , -t 3 a t 4  >

(2 )3 c4

The form of the components in the bilinear field are given by <0(1)> in

Eqs. A3. That is,

(A 17)

and

<0 (3)> = <1/16 c 4 (Z-3E+g 3 )(1 z- 1- +1 3) 1/16 c,,(2+3E- 3 ) (I -1 1 Z + 3

1/16 c 2 (2+3g- g 3 ) 31 - + 32 + 7 3 1 / 16 34 ( Z- 3 E+ E3 ) ( - 1 - 1 + 12 + . 3 >

< (3)uv >= < 1/ 1 6  s (23g+ 3 ) (1-1-)2 +- 3 ), -1/16 s (2+3§- 3)(1- -2+-3),

-1/16 se ? (2+3g-g 3 ) (_1 -1+7}Z+)3 ), -1/16 s 4(2-3g+§ 3 ) (-I1-TZ+ 7 3 )

.(3) 231_3+2+3) ( 33)
< 0(3 > = < 1/16 cl (1-9+92+C 3 ) (2-31+1)3 ), 1/16 c olgt2 3)(31+3

1/16 c 3 (-1-9+92 +E.) (Z+31-n 3 ), 1/16 c 3 (-E-g2+ 3 ) (2+31-n 3 ) >

<0vu '(3)>= <1/16 s (1-+Z3) (2+311- 3), 1/16 s 0(- - 2+F 3 ) (2 + 3 rj- 2 ) >

(A 18)

Differentiating Eq. (AIS) with respect to the normalized coordinate yields

in matrix notation

ii, C -To - 0 T 11&1 0 0

0,T Tu 0ui TUV 1T ~tI 1 0 (Vi

v. 0 -Tu T 00

- (A19)

A-8
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where

1 -1 0 0- 1 0 0 -1-

1 -1 0 0 0 1 - 0

T 0 0  - 1  1  T 0 1 -1 0

0 0 -1 1 1 0 0 -1

(A 20)

If the operations indicated by the second term on the right side of Eq.

(A19) are carried out, this term is found to be identically equal to

zero at all corner nodes. Consequently, the derivatives with respect to

C and n of the displacement field corresponding to the midnode displace-

ments will vanish and need not be given any further consideration.

Next the boundary line normal rotations corresponding to the linear

polynomial. For this purpose the inplane displacements normal to the

boundary are differentiated with respect to the distance along the ele-

ment side.

From the figure, it is observed that

r (x-x)I2 , - /-- 2 a on boundary I
Zr - (x 2 -X1 ) T§ (A21)

' (s Z4- 2 '  on boundary 4

(Y4 -YI) a~s (y4  y1) 71

Also,

v = vc + u s on boundary I
(AZZ)

u = v s + uc on boundary 4
n 4 (4

A-9 L
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where

Y4-yl 0 0 0
Zc

014

Y3Yz 0 0
2 (A6)

T =0 0

o "0 0

0 Y4-Yl

020 0 0

Zc cay4

x x 1 -00x

0 2 0 0
Zc

T 0 0 (A27)

0 2c

343

T0 0 x 324

2cc
33

t 0 0 0
014

0 t 0 0
T(AZ8)T

ol 0 t 0

0 0 t cr4

-t 0 0 0

0 -t 0 0

T 
(AZ9)

Sv 0 0 -t 0CV3

0 0 0 -t

A-10
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x 2 -x1

x 2  x

0o Tx 1  0 0

T (A27)T v x -x

3 4x

0 0 0 0

0

Zc
Of3 .

x
0 0 0 0~2c

C'3

ti 0o 0 0

0 t 0 0

T (A28)
ON 0 0 t 0a2

0 0 0

il
0 t 0 0

T (AZ9)
0v 0 -t 3 0

J!0 0 0-t

I'

and ta tan.(a
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From comparison of the left-hand side of Eq. (A25) to similar terms in

Eq. (A19) the expression for the correction terms yu and yv are deter-

mined, yielding

=i uu vu + [T (A30)

'i v  uv Tw 1i 0 T 3~' x

where j = 1, if i = I or 2, j = 3 if i = 3or 4, and k = 4 if i = I or 4, k = 2 if

i = 2 or 3.

Tu Tw o Tou T are defined in Eqs. (AZO)," (A26), (A27); the 0i ' j ) are

defined in Eqs. (AZ). Notice also that U,. = -B3 ( Z or 4, 1) and v, r 3 or 3,i)

a (

t -t 0 0 -t 0 0 t
01 1 4

t -t 0 0 0 -t t 0

T =1/2 l Tvu = 1/2 2 02Tuv 0 0 -t t 0 -t t 0
3 o3 cZ 0 2

0 0 -t t -t 0 0 t

LC3 O3 L 4 4
4 4

(A31)

By substituting Eq. (A30) into Eq. (A15), the correction terms yu and yv

are eliminated and the expression for u and v is obtained in terms of

the selected flat plate freedoms.
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U (1)> fU I+ 0(2)> tiU

+*< (o3)> (T U( ui + T VUfv1 + O (u, 1)

+ < (3 >(T (u~l + T f v,) + T I v,
Vu UVV rY

(A 32)

V <0 > Iv.' + <0~>[t V]

+ 0()>( uj+Tv(i + To tv' r.1)

+ < 13 (T fu. + T (vil + TB IV, I)
V UV V OV r1

The derivatives of u and v with respect to x and y are needed at the

integration points inside the element. The chain rule of differentia-

tion yields

U, x J* 01U

y U,(A33)

V. y I V, I

where 3* is defined by Eq. (A14).

Henc e,
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where

K 0<(1)>, 11IO0M 9I

(< 0 >, tIY) (2) (3) f D(A35

The values of the shape functions 0(l,0.) and 0(3 at the eight nodes

(four corners and four mid nodes) are shown in Table Al.
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Table Al

SHAPE FUNCTIONS AND DERIVATIVES EVALUATED
AT NODES AND MID NODES

a) Bilinear Functions

(1)> 1/4(1+), -1/4(1+1)>

<0(1)> 1/4(1+§). 1/4(1-g) >

Node 11 ()()

1 -i =1 1,0.0.0 -1/2.1/2,0.0 -1/2, 0, 0, 1/2

Z -1 0,1,0.0 .1/Z, 1/2, 0. 0 0, -1/2,1/2.0

3 1 1 0,0,1,0 o 0, 1/2, -1/2 O, -1/ , 1/2. 0

4 -1 1 0,0,0,1 0. 0, 1/2, -1/2Z -1/2,0, 0.1/2

5 0 -1 1IZ, 1/2, 0,0 -1/2, 1/2, 0.0 -1/4, -1/4, 1/4,1/4

6 1 0 0.1 /2.1/2,0 -1/4, 1/4, 1/4, -1/4 0, -1/2. 1/2, 0

7 0 1 0, 0, 1,1/2 00,O1/2-1/Z -1/4, -1/4,114,114

8 -1 0 I/Z,0,1/2 -1/4.1/4.1/4, -1/4 -1/2, 0, 0, 1/z

11
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b) Biquadratic Fu.ction

(2) 2
< ()>. _<-C(1-11), 1/2(1-1) -9(1+1). -1/20(1 )

N ode 0I (2) 
0() (2)

1 -1 -1 0,0,.0 2,0,O,0 0.,,02

2-1 0,0.0,0 -2,0,0,0 0,2,0.0

3 1 1 0,0,0,0 0,0,-Z,0 0,-2,0,0

4 -1 1 0,00,0 0,0.2,0 0.0.0, -2

5 0 -1 1,0,010 0,0,0 -1/2, , 1/2, 1

6 1 0 0,1,0,0 -1,1/2, -1, -1/2 ,0

7 0 1 0,0,1,0 0,0,0,0 -1/2, -1, 1/2. -1

8 -1 0 0,0,0,1 1,1/2.1, -1/2 0,0,0,0

A-16
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c) Bicubic Functions

<0 (3) <1/16 c (-3+39 2 )(1-11-1 2 13 ), 1/ 16 ca(33 01?+)

@4r

* 0 (3) < 1/16 c (2-39+9 )(-1-21+31 2). 1/ 16 c a(2+39-C )(-1-T1+31) ).

1/16 c &Z(2+3C-9 )(-1+2TI+3r1 ). 1/16 c 04(2-3 t+ t )(-1+2 +31 2 )>

* 0()>1c/16 c (-1-29+3e)(2-3?1+!?),16c 42t32)(- 3

1/1 c ~ (-+93 (+1-, 1/16 c O (-+2+39 )(2311-1 3
2 3

* 0(3)> 1/16 c (1-9-+2 +3e)(Z3+31-f). 1/16 c (-1-++3~ )(-3+31 I~)

1/6 C3(-992.+C32 ?) / 6cC3( - 2 C3 )(-12>

< 0 () > <1/16 s (-3+g 3~ )(31-2311 2 -1/16 (2+3-s + )(-3q 2 1 1

<0~ ~ (3)>-1/16 a (-1-2+3 2 )(-3+1 3 ), -1/16 a -+C3

2 23 2 23-1/16 sar (-1+3 )(2+31-+ 1 ),~ 1-1/16 a v3(-1+3 )(2l+3 - 1

<0(3) z <1/16 a (-3- +9 )(-1+31 2 ), 1/16 s & (ZsC-2C 3)(-3-~+3~ )

<1/16 a a (-1-92+)(-3+ )), 1/16 a 3(__ g)331)
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The changes of curvature In the element are determined from the lateral dis-

placements and the rotation components w,x and w,y as given by Eq. (All).

The cubic interpolating functions defined for the membrane element could be

-used if the analysis were restricted to rectangular elements. However, for

the bending part the isoparametric mapping to the &,n coordinates produces

strain energy under rigid body displacement if the element is nonrectangular.

Therefore the Taylor series approach was used. The two-dimensional Taylor

series includes all terms through the third-order and two fourth-order

terms l3X y and w xy3. A penalty function is applied to the freedoms

w1 3 and w31. This constraint is found to reduce significantly the effect

of rotational nonconformity.
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